Database Design: Normalization

Agenda

- 1. Database Design
- 2. Normal forms & functional dependencies
- 3. Finding functional dependencies
- 4. Closures, superkeys & keys

Design Theory

- The biggest problem needed to be solved in database is *data redundancy*.
- Why data redundancy is the problem? Because it causes:
 - Insert Anomaly
 - > Update Anomaly
 - Delete Anomaly
- > Design theory is about how to represent your data to avoid *anomalies*.
- Achieved by Data Normalization, a process of analyzing a relation to ensure that it is well formed.
- Normalization involves decomposing relations with anomalies to produce smaller well structured relations.
- If a relation is normalized (or well formed), rows can be inserted, deleted and modified without creating anomalies.

Data Anomalies & Constraints

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	101
Sam	CSC261	101

If every course is in only one room, contains *redundant* information!

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	703
Sam	CSC261	101

If we update the room number for one tuple, we get inconsistent data = an <u>update anomaly</u>

A poorly designed database causes anomalies:

Student	Course	Roon	n
		•••	

If everyone drops the class, we lose what room the class is in! = a <u>delete anomaly</u>

A poorly designed database causes anomalies:

			Student	Course	Room
			Mary	CSC261	B01
			Joe	CSC261	B01
			Sam	CSC261	B01
C	SC461	703 🛋			

Similarly, we can't reserve a room without students = an <u>insert anomaly</u>

Student	Course
Mary	CSC261
Joe	CSC261
Sam	CSC261
••	•••

Course	Room
CSC261	101
CSC257	601

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better **and** how to find this *decomposition*...

Database Anomalies Example 2

Anomalies are problems caused by **bad database design**.

Example:

ACTIVITY(StudentID, Activity, Fee)

An **insertion anomaly** occurs when a row cannot be added to a

relation, because not all data are available (or one has to invent "dummy" data)

Example: we want to store that scuba diving costs \$175, but have no place to put this information until a student takes up scuba-diving (unless we create a fake student)

A **deletion anomaly** occurs when data is deleted from a relation, and other critical data are unintentionally lost

Example: if we delete the record with StudentID = 100, we forget that skiing costs \$200

An **update anomaly** occurs when one must make many changes to reflect the modification of a single datum

Example: if the cost of swimming changes, then all entries with swimming Activity must be changed too

ACTIVITY Relation

StudentID	Activity	Fee
100	Skiing	200
100	Golf	65
175	Squash	50
175	Swimming	50
200	Swimming	50
200	Golf	65

Cause of Anomalies

Anomalies are primarily **caused** by:

- Data redundancy: replication of the same field in multiple tables, other than foreign keys
- 2. Functional dependencies including:
 - Partial dependency
 - Transitive dependency
 - Multi-value dependency

Functional Dependencies

Functional Dependencies for Dummies

- A relationship between attributes where one attribute (or group of attributes) determines the value of another attribute (or group of attributes) in the same table.
- Example:

SSN uniquely identify any Person

$(SSN) \rightarrow (First Name, Last Name)$

Candidate Keys/Primary Keys and Functional Dependencies

By definition:

• A candidate key of a relation functionally determines all other **non-key** attributes in the row.

Implies:

• A primary key of a relation functionally determines all other non-key attributes in the row.

EmployeeID → (EmployeeName, EmpPhone)

Functional Dependency

Def: Let A, B be *sets* of attributes, we write $A \rightarrow B$ or say A *functionally determines* B if, for any tuples t_1 and t_2 : $t_1[A] = t_2[A]$ implies $t_1[B] = t_2[B]$ and we call $A \rightarrow B$ a *functional dependency*

 $A \rightarrow B$ means that "whenever two tuples agree on A then they agree on B."

А	lt is a determinant set.
В	It is a dependent attribute.
$\{A \rightarrow B\}$	A functionally determines B. B is a functionally dependent on A.

<u>Defn (again):</u> Given attribute sets $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_n\}$ in R,

<u>Defn (again):</u> Given attribute sets $A=\{A_1,...,A_m\}$ and $B = \{B_1,...,B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on **R** holds if for *any* t_i , t_j in R:

If t1, t2 agree here..

Defn (again):

Given attribute sets $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on **R** holds if for *any* t_i, t_j in R:

 $t_i[A_1] = t_j[A_1] \text{ AND } t_i[A_2]=t_j[A_2] \text{ AND } \dots$ AND $t_i[A_m] = t_j[A_m]$

Defn (again):

Given attribute sets $A = \{A_1, ..., A_m\}$ and $B = \{B_1, ..., B_n\}$ in R,

The *functional dependency* $A \rightarrow B$ on **R** holds if for *any* t_i, t_j in R:

 $\label{eq:if_i_a_l} \begin{array}{l} \underline{if} \ t_i[A_1] = t_j[A_1] \ \text{AND} \ t_i[A_2] = t_j[A_2] \ \text{AND} \\ ... \ \text{AND} \ t_i[A_m] = t_j[A_m] \end{array}$

<u>then</u> $t_i[B_1] = t_j[B_1]$ AND $t_i[B_2]=t_j[B_2]$ AND ... AND $t_i[B_n] = t_j[B_n]$

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

- 1. Start with some relational schema (e.g., design by ER diagram)
- 2. Find out its functional dependencies (FDs)
- 3. Use these to design a better schema
 - One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A **functional dependency** is a form of **constraint**

- *Holds* on some instances not others.
- Part of the schema, helps define a valid *instance*.

Recall: an *instance* of a schema is a multiset of tuples conforming to that schema, *i.e. a table*

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01

Note: The FD {Course} -> {Room} *holds on this instance*

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
 - This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
		••

However, cannot *prove* that the FD {Course} -> {Room} is *part of the schema*

More Examples

An FD is a constraint which <u>holds</u>, or <u>does not hold</u> on an instance:

EmplD	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876 ←	Salesrep
E1111	Smith	9876 ←	- Salesrep
E9999	Mary	1234	Lawyer

{Position} \rightarrow {Phone}

More Examples

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but *not* {Phone} \rightarrow {Position}

ACTIVITY

Α	В	С	D	Ε
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least *three* FDs which hold on this instance:

{A	} → {C	}
{A,B	} → {C	}
{E	} → {D	}

- > Armstrong's Axioms is a set of rules.
- It provides a simple technique for reasoning about functional dependencies.
- It was developed by William W. Armstrong in 1974.
- It is used to infer all the functional dependencies on a relational database.

A. Primary Rules:

Rule 1	Reflexivity If A is a set of attributes and B is a subset of A, then A holds B. { $A \rightarrow B$ } (If B $\subseteq A$, then $A \rightarrow B$)
Rule 2	Augmentation If A hold B and C is a set of attributes, then AC holds BC. {AC \rightarrow BC} (If A \rightarrow B, then AC \rightarrow BC for any C) It means that attribute in dependencies does not change the basic dependencies.
Rule 3	Transitivity If A holds B and B holds C, then A holds C. If $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$ A holds B $\{A \rightarrow B\}$ means that A functionally determines B.

B. Secondary Rules:

Rule 1	Union If A holds B and A holds C, then A holds BC. If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow BC\}$
Rule 2	Decomposition If A holds BC and A holds B, then A holds C. If $\{A \rightarrow BC\}$, then $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$
Rule 3	Pseudo Transitivity If A holds B and BC holds D, then AC holds D. If $\{A \rightarrow B\}$ and $\{BC \rightarrow D\}$, then $\{AC \rightarrow D\}$

B. Secondary Rules:

Rule 4	Self determination $\{A \rightarrow A\}$ for any A. This follows directly from the axiom of reflexivity.
Rule 5	Composition If A holds B and X holds Y, then AX holds BY. If $\{A \rightarrow B\}$ and $\{X \rightarrow Y\}$, then $\{AX \rightarrow BY\}$
Rule 6	Extensivity The following property is a special case of augmentation when C = A If A holds C, then A holds AC. If $\{A \rightarrow C\}$ then $\{A \rightarrow AC\}$

Axioms are both

Sound:

when applied to a set of functional dependencies they only produce dependency tables that belong to the transitive closure of that set

Complete:

can produce all dependency tables that belong to the transitive closure of the set

Three last rules can be derived from the first three (the axioms) Let us look at the *union rule*:

if X \rightarrow Y and X \rightarrow Z, the X \rightarrow YZ Using the first three axioms, we have: if X \rightarrow Y, then XX \rightarrow XY same as X \rightarrow XY (2nd) if X \rightarrow Z, then YX \rightarrow YZ same as XY \rightarrow YZ (2nd) if X \rightarrow XY and XY \rightarrow YZ, then X \rightarrow YZ (3rd)

Example:

Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).

 $\begin{array}{ll} P \rightarrow Q & P \rightarrow R \\ QR \rightarrow S & Q \rightarrow T \\ QR \rightarrow U & PR \rightarrow U \end{array}$

Calculate some members of axioms are as follows:

1. $P \rightarrow T$ 2. $PR \rightarrow S$ 3. $QR \rightarrow SU$ 4. $PR \rightarrow SU$

Axioms:

Reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$ Augmentation: if $X \rightarrow Y$, then $WX \rightarrow WY$ Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Derived Rules:

Union: if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow YZ$ Decomposition: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$ Pseudo transitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$

Solution:

1. P \rightarrow T

In the FD set, $P \rightarrow Q$ and $Q \rightarrow T$ **So, Using Transitive Rule: If {A \rightarrow B} and {B \rightarrow C}, then {A \rightarrow C} \therefore If P \rightarrow Q and Q \rightarrow T, then P \rightarrow T.**

2. PR \rightarrow S

In the above FD set, $P \rightarrow Q$ As, $QR \rightarrow S$ **So, Using Pseudo Transitivity Rule: If{A \rightarrow B} and {BC \rightarrow D}, then {AC \rightarrow D} \therefore If P \rightarrow Q and QR \rightarrow S, then PR \rightarrow S.**

3. QR \rightarrow SU In above FD set, QR \rightarrow S and QR \rightarrow U **So, Using Union Rule: If{A** \rightarrow B**} and {A** \rightarrow C**}, then {A** \rightarrow BC**}** \therefore If QR \rightarrow S and QR \rightarrow U, **then QR** \rightarrow SU.

4. PR → SU So, Using Pseudo Transitivity Rule: If{A → B} and {BC → D}, then {AC → D} \therefore If PR → S and PR → U, then PR → SU.

Axioms:

Reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$ Augmentation: if $X \rightarrow Y$, then $WX \rightarrow WY$ Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Derived Rules:

Union: if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow YZ$ Decomposition: if $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$ Pseudo transitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$, then $XW \rightarrow Z$

Trivial Functional Dependency

Trivial	If A holds B {A \rightarrow B}, where B is a subset of A, then it is called a Trivial Functional Dependency . Trivial always holds Functional Dependency.
Non-Trivial	If A holds B {A \rightarrow B}, where B is not a subset A, then it is called as a Non-Trivial Functional Dependency.

Normalization

<u>https://www.youtube.com/watch?v=UrYLYV7WSHM</u> <u>https://www.youtube.com/watch?v=l5DCnCzDb8g</u>
Normalization

- Normalization is the process of removing redundant data from your tables to improve storage efficiency, data integrity, and scalability.
- Normalization generally involves splitting existing tables into multiple ones, which must be re-joined or linked each time a query is issued.
- > Why normalization?
 - The relation derived from the user view or data store will most likely be unnormalized.
 - The problem usually happens when an existing system uses unstructured file, e.g. in MS Excel.

Unnormalized Form (table) Example

ClientRental

clientNo	cName	propertyNo	pAddress	rentStart	rentFinish	rent	ownerNo	oName
CR76	John Kay	PG4	6 Lawrence St, Glasgow	1-Jul-03	31-Aug-04	350	CO40	Tina Murphy
		PG16	5 Novar Dr, Glasgow	1-Sep-04	1-Sep-05	450	CO93	Tony Shaw
CR56	Aline Stewart	PG4	6 Lawrence St, Glasgow	1-Sep-02	10-June-03	350	CO40	Tina Murphy
		PG36	2 Manor Rd, Glasgow	10-Oct-03	1-Dec-04	375	CO93	Tony Shaw
		PG16	5 Novar Dr, Glasgow	1-Nov-05	10-Aug-06	450	CO93	Tony Shaw

Normalization Example

- (Student ID) → (Student Name, DormName, DormCost)
- However, if
 - (DormName) \rightarrow (DormCost)

Then, DormCost should be put into its own relation, resulting in:

(Student ID) → (Student Name, DormName) (DormName) → (DormCost)

Normalization Example

- (AttorneyID, ClientID) → (ClientName, MeetingDate, Duration)
- However, if
 - ClientID \rightarrow ClientName
- Then: ClientName should be in its own relation:
- (AttorneyID, ClientID) → (MeetingDate, Duration)
- (ClientID) → (ClientName)

Steps of Normalization

- ✓ First Normal Form (1NF)
- ✓ Second Normal Form (2NF)
- ✓ Third Normal Form (3NF)
- ✓ Boyce-Codd Normal Form (BCNF)
- ✓ Fourth Normal Form (4NF)
- ✓ Fifth Normal Form (5NF)
- ✓ Domain Key Normal Form (DKNF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for database.

Normal Forms

- <u>1stNormal Form (1NF) = All tables are flat</u>
- <u>2nd Normal Form (2NF)</u>
- <u>3rd Normal Form (3NF)</u>
- <u>Boyce-Codd Normal Form (BCNF)</u>

DB designs based on *functional dependencies,* intended to prevent data *anomalies*

• $4^{th} and 5^{th} Normal Forms = see text books$

First Normal Form (1NF)

The official qualifications for 1NF are:

- 1. Each **attribute name** must be unique.
- 2. Each **attribute value** must be single.
- 3. Each **row** must be unique.
- 4. There is **no repeating groups**.

Additional:

Choose a primary key.

Reminder:

A primary key is *unique*, *not null*, *unchanged*. A primary key can be either an attribute or combined attributes.

1st Normal Form (1NF)

Student	Courses
Mary	{CS145, CS229}
Joe	{CS145, CS106}
•••	

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

Violates 1NF.

In 1st NF

1NF Constraint: Types must be atomic!

First Normal Form (1NF) (Cont.)

Example of a table not in 1NF :

Group	Торіс	Student Score		core
Group A	Intro MongoDB	Sok San	18	marks
		Sao Ry	17	marks
Group B	Intro MySQL	Chan Tina	19	marks
		Tith Sophea	16	marks

It violates the 1NF because:

- > Attribute values are not single.
- Repeating groups exists.

First Normal Form (1NF) (Cont.)

> After eliminating:

Group	Торіс	Family Name	Given Name	Score
А	Intro MongoDB	Sok	San	18
A	Intro MongoDB	Sao	Ry	17
В	Intro MySQL	Chan	Tina	19
В	Intro MySQL	Tith	Sophea	16

Now it is in 1NF. However, it might still violate 2NF and so on.

Functional Dependencies

We say an attribute, B, has a *functional dependency* on another attribute, A, if for any two records, which have the same value for A, then the values for B in these two records must be the same. We illustrate this as:

 $A \rightarrow B$ (read as: A determines B or B depends on A)

Employee_name	Project	Email_address
Joe San	POS Mart Sys	<u>soksan@yahoo.com</u>
Sao Ry	Univ Mgt Sys	<u>sao@yahoo.com</u>
Joe San	Web Redesign	<u>soksan@yahoo.com</u>
Chan Sokna	POS Mart Sys	<u>chan@gmail.com</u>
Sao Ry	DB Design	<u>sao@yahoo.com</u>

Employee_name \rightarrow Email_address

Functional Dependencies (cont.)

<u>EmpNum</u>	EmpEmail	EmpFname	EmpLname
123	jdoe@abc.com	John	Doe
456	psmith@abc.com	Peter	Smith
555	alee1@abc.com	Alan	Lee
633	pdoe@abc.com	Peter	Doe
787	alee2@abc.com	Alan	Lee

If EmpNum is the PK then the FDs:

EmpNum → EmpEmail, EmpFname, EmpLname

must exist.

Functional Dependencies (cont.)

EmpNum → EmpEmail, EmpFname, EmpLname

3 different ways you might see FDs depicted

EmpNum	EmpEmail	EmpFname	EmpLname
		^	

Determinant

Functional Dependency

$EmpNum \rightarrow EmpEmail$

Attribute on the left hand side is known as the *determinant*

• EmpNum is a *determinant* of EmpEmail

Second Normal Form (2NF)

The official qualifications for 2NF are:

- 1. A table is already in 1NF.
- 2. All non-key attributes are fully dependent on the primary key.

All **partial dependencies** are removed to place in another table.

Partial Dependencies

- Partial dependency is a functional dependency whose determinant is part of the primary key (but not all of it)
- Example:

ACTIVITY(StudentID, Activity, Fee)

Example of a table not in 2NF:

CourselD	SemesterID	Num Student	Course Name
IT101	201301	25	Database
IT101	201302	25	Database
IT102	201301	30	Web Prog
IT102	201302	35	Web Prog
IT103	201401	20	Networking
Primary K			

The *Course Name* depends on only *CourseID*, a part of the primary key not the whole primary {*CourseID*, *SemesterID*}. It's called **partial dependency**.

Solution:

Remove **CourseID** and **Course Name** together to create a new table.

CourseID	Course Name	<u>CourselD</u>	<u>SemesterID</u>	Num Student
IT101	Database	IT101	201301	25
IT101	Database	IT101	201302	25
IT102	Web Prog	IT102	201301	30
IT102	Web Prog	IT102	201302	35
IT103	Networking	IT103	201401	20
Done? Oh no, it is 1NF yet.	still not in		-	
Remove the	repeating	<u>CourseID</u>	Course N	lame
groups too.		IT101	D atabase	
Finally, con		IT102	Web Prog	
relationship).	IT103	Networkir	ופ

Third Normal Form (3NF)

The official qualifications for 3NF are:

- 1. A table is already in 2NF.
- 2. Nonprimary key attributes do not depend on other nonprimary key attributes
 - (i.e. no transitive dependencies)

All transitive dependencies are removed to place in another table.

Transitive Dependencies

Transitive dependency is a functional dependency whose determinant is not the primary key, part of the primary key, or a candidate key.

Transitive functionality is a functional dependency in which a non-key attribute is determined by another non-key attribute.

Example:

ACTIVITY(StudentID, Activity, Fee)

<u>StudentID</u>	Activity	Fee
100	Skiing	200
100	Golf	65
175	Squash	50
175	Swimming	50
200	Swimming	50
200	Golf	65

Example of a Table not in 3NF:

<u>StudyID</u>	<u>CourseName</u>	TeacherName	TeacherTel
1	Database	Sok Piseth	012 123 456
2	Database	Sao Kanha	0977 322 111
3	Web Prog	Chan Veasna	012 412 333
4	Web Prog	Chan Veasna	012 412 333
5	Networking	Pou Sambath	077 545 221

Primary Key

The *TeacherTel* is a nonkey attribute, and the *TeacherName* is also a nonkey attribute. But *TeacherTel* depends on *TeacherName*. It is called **transitive dependency**.

Solution:

Remove **Teacher Name** and **TeacherTel** together to create a new table.

Sok P	iseth	012	123 456	Done? Oh no, it is still not in 1NF yet. Remove Repeating row.				
				<u>Stud</u>	yID (Course Nam	ne	T.ID
		-		1	[Database		T1
				2	[Database		Т2
Pou S	ambath	0// !	545 221	3	١	Web Prog		Т3
	Teacher Nar	ne	Teacher Tel	4	١	Web Prog		Т3
	Sok Piseth		012 123 456	5	1	Networking		T4
\neg	Sao Kanha		0977 322 111					¥
Sok Piseth 012 123 456								
	Sao Kanha 0977 322 111 Chan Veasna 012 412 333 Chan Veasna 012 412 333 Pou Sambath 077 545 221 Teacher Name Teacher	077 545 221						
			\bigwedge	_=				
Note	about prima	ry ke	ey:	<u>ID</u>	Teach	er Name	Teacher	Tel
				T1	Sok Pis	eth	012 123 4	456
		•		T2	Sao Ka	nha	0977 322	111
	• • •			Т3	Chan V	/easna	012 412 3	333
		// IIIIa	i y ncy.	T4	Pou Sa	mbath	077 545 2	221

Boyce Codd Normal Form (BCNF) – 3.5NF

The official qualifications for BCNF are:

- 1. A table is already in 3NF.
- 2. All determinants must be superkeys.
- All determinants that are not superkeys are removed to place in another table.

- K is a superkey for relation R if K functionally determines all of R.
- K is a (candidate)key for R if K is a superkey, but no proper subset of K is a superkey.

Boyce Codd Normal Form (BCNF) (Cont.)

> Example of a table not in BCNF:

<u>Student</u>	<u>Course</u>	Teacher
Sok	DB	John
Sao	DB	William
Chan	E-Commerce	Todd
Sok	E-Commerce	Todd
Chan	DB	William

- Key: {Student, Course}
- Functional Dependency:
 - ➢ {Student, Course} → Teacher
 - \succ Teacher \rightarrow Course

> Problem: *Teacher* is not a superkey but determines *Course*.

<u>Student</u>	<u>Course</u>	Solution: Decouple a table
Sok	DB	contains Teacher and Course from original table (Student,
Sao	DB	Course). Finally, connect the
C han	E-Commerce	new and old table to third
Sok	E-Commerce	table contains <i>Course</i> .
C han	DB	Course
		DB
		E-Commerce
Course	<u>Teacher</u>	+
DB	John	
DB	W illiam	
E-Commerce	Todd	
¥		

Forth Normal Form (4NF)

The official qualifications for 4NF are:

- 1. A table is already in BCNF.
- 2. A table contains no multi-valued dependencies.
- Multi-valued dependency: MVDs occur when two or more independent multi valued facts about the same attribute occur within the same table.
 - A ->-> B (B multi-valued depends on A)

Example: MVD

Customer(name, addr, phones, drinksLiked) A drinker's phones are independent of the drinks they like. name->->phones and name ->->drinksLiked.

Thus, each of a drinker's phones appears with each of the drinks they like in all combinations.

Tuples Implied by **name->->phones**

If we have tuples:

name	addr	phones	drinksLiked
sue	а	p1	d1
sue	а	p2	d2
sue	а	p2	d1
sue	а	р2 р1	d2
sue	а	рт	02

Then these tuples must also be in the relation.

Picture of MVD X ->->Y

Forth Normal Form (4NF) (Cont.)

\succ Example of a table not in 4NF:

Student	Major	Hobby
Sok	IT	Football
Sok	IT	Volleyball
Sao	IT	Football
Sao	Med	Football
Chan	IT	NULL
Puth	NULL	Football
Tith	NULL	NULL

- Key: {Student, Major, Hobby}
- > MVD: Student -->> Major, Hobby

Solution: Decouple to each table contains MVD. Finally, connect each to a third table contains *Student*.

	<u>Student</u>	<u>Major</u>
	Sok	IT
	Sao	IT
K	Sao	Med
	Chan	IT
	Puth	NULL
	Tith	NULL

	<u>Student</u>	<u>Hobby</u>
_	Sok	Football
So	Sok	Volleyball
	Sao	Football
	Chan	NULL
	Puth	Football
	Tith	NULL

Fifth Normal Form (5NF)

The official qualifications for 5NF are:

- 1. A table is already in 4NF.
- 2. The attributes of multi-valued dependencies are not related.

Fifth Normal Form (5NF) (Cont.)

 \succ Example of a table not in 5NF:

<u>Seller</u>	Company	<u>Product</u>
Sok	MIAF Trading	Zenya
Sao	Coca-Cola Corp	Coke
Sao	Coca-Cola Corp	Fanta
Sao	Coca-Cola Corp	Sprite
Chan	Angkor Brewery	Angkor Beer
Chan	Cambodia Brewery	Cambodia Beer

- Key: {Seller, Company, Product}
- > MVD: Seller -->> Company, Product
- > *Product* is related to *Company*.

		<u>Seller</u>	<u>Company</u>			<u>Compa</u>		
<u>Seller</u>	<u>1 M</u>	Sok	MIAF Trading		<u>M 1</u>	MIAF Tra	ading	
Sok		Sao	Coca-Cola Corp			Coca-Co	la Corp	
Sao		C han	Angkor Brewery			Angkor I	Brewery	
C han		C han	Cambodia Brewer	у		Cambod	ia Brewery	
1				-		1 M		
M	Droduct	1			<u>Compa</u>	iny	<u>Product</u>	
<u>Seller</u> Sok	Product Zopya				MIAF Tra	ading	Zenya	
	Zenya		M	_	Coca-Co	ola Corp	Coke	
Sao	Coke		<u>Product</u>		Coca-Co	ola Corp	Fanta	
Sao	Fanta		Zenya		Coca-Co	ola Corp	Sprite	
Sao	Sprite		Coke		Angkor	Brewery	Angkor Bee	er
C han	Angkor Be	er	Fanta		C amboo	lia	C ambodia	
C han	C ambodia		Sprite		Brewery		Beer	
	Beer		Angkor Beer	1			Μ	

FINDING FUNCTIONAL DEPENDENCIES

What you will learn about in this section

- 1. "Good" vs. "Bad" FDs: Intuition
- 2. Finding FDs
- 3. Closures
"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD" Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of **good** vs. **bad** FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

Intuitively:

EmpID -> Name, Phone, Position is "good FD"

But Position -> Phone *is a "bad FD" Redundancy! Possibility of data anomalies*

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
••		

Returning to our original example... can you see how the "bad FD" {Course} -> {Room} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Given a set of FDs (from user) our goal is to:

- 1. Find all FDs, and
- 2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care about FDs?
 - 1. Start with some relational *schema*
 - 2. Find out its functional dependencies (FDs)
 - 3. Use these to **design a better schema**
 - 1. One which minimizes possibility of anomalies

- There can be a very large number of FDs...
 How to find them all efficiently?
- We can't necessarily show that any FD will hold **on all instances...**
 - How to do this?

We will start with this problem: Given a set of FDs, F, what other FDs *must* hold?

Equivalent to asking: Given a set of FDs, $F = {f_1, ..., f_n}$, does an FD g hold?

Inference problem: How do we decide?

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} \rightarrow {Color}
- 2. {Category} \rightarrow {Department}
- 3. {Color, Category} \rightarrow {Price}

Given the provided FDs, we can see that {Name, Category} \rightarrow {Price} must also hold on **any instance**...

Which / how many other FDs do?!?

Equivalent to asking: Given a set of FDs, $F = {f_1, ..., f_n}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong's Rules.

- 1. Split/Combine,
- 2. Reduction, and
- 3. Transitivity... ideas by picture

1. Split/Combine (Decomposition & Union Rule)

 $A_1, ..., A_m \rightarrow B_1, ..., B_n$

1. Split/Combine (Decomposition & Union Rule)

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

... is equivalent to the following *n* FDs...

 $A_1,...,A_m \rightarrow B_i$ for i=1,...,n

1. Split/Combine (Decomposition & Union Rule)

And vice-versa, $A_1, ..., A_m \rightarrow B_i$ for i=1,...,n

... is equivalent to ...

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$

2. Reduction/Trivial (Reflexive Rule)

$$A_1,...,A_m \rightarrow A_j$$
 for any j=1,...,m

3. Transitive Rule

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and
 $B_1, ..., B_n \rightarrow C_1, ..., C_k$

3. Transitive Rule

$$A_1, ..., A_m \rightarrow B_1, ..., B_n$$
 and
 $B_1, ..., B_n \rightarrow C_1, ..., C_k$

implies

$$A_1, \dots, A_m \rightarrow C_1, \dots, C_k$$

Augmentation Rule

 $A_1, ..., A_m \rightarrow B_1, ..., B_n$ implies

Augmentation Rule

 $A_1, ..., A_m \rightarrow B_1, ..., B_n$ implies $X_1, A_1, ..., A_m \rightarrow B_1, ..., B_n$

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

- 1. {Name} \rightarrow {Color}
- 2. {Category} \rightarrow {Department}
- 3. {Color, Category} \rightarrow {Price}

Which / how many other FDs hold?

Provided FDs:

- 1. {Name} \rightarrow {Color}
- 2. {Category} \rightarrow {Dept.}
- 3. {Color, Category} \rightarrow {Price}

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	?
5. {Name, Category} -> {Color}	?
6. {Name, Category} -> {Category}	?
7. {Name, Category} -> {Color, Category}	?
8. {Name, Category} -> {Price}	?

Which / how many other FDs hold?

Provided FDs:

- 1. {Name} \rightarrow {Color}
- 2. {Category} \rightarrow {Dept.}
- 3. {Color, Category} \rightarrow {Price}

Example:

Inferred FDs:

Inferred FD	Rule used
4. {Name, Category} -> {Name}	Trivial
5. {Name, Category} -> {Color}	Transitive (4 -> 1)
6. {Name, Category} -> {Category}	Trivial
7. {Name, Category} -> {Color, Category}	Split/combine (5 + 6)
8. {Name, Category} -> {Price}	Transitive (7 -> 3)

Can we find an algorithmic way to do this?

Yes. But we need to learn about closures before that!

<u>Closures</u>

Closure of a set of Attributes

Given a set of attributes A_1 , ..., A_n and a set of FDs F: Then the <u>closure</u>, $\{A_1, ..., A_n\}^+$ is the set of attributes B s.t. $\{A_1, ..., A_n\} \rightarrow B$

<u>Example:</u>	F =	<pre>{name} → {color} {category} → {department} {color, category} → {price}</pre>
Example Closures:		<pre>{name}+ = {name, color} {name, category}+ = {name, category, color, dept, price} {color}+ = {color}</pre>

```
Start with X = {A<sub>1</sub>, ..., A<sub>n</sub>} and set of FDs F.

Repeat until X doesn't change;

do:

if {B<sub>1</sub>, ..., B<sub>n</sub>} \rightarrow C is in F and {B<sub>1</sub>, ..., B<sub>n</sub>} \subseteq X then

add C to X.

Return X as X<sup>+</sup>
```

```
Start with X = \{A_1, ..., A_n\}, FDs F.
Repeat until X doesn't change;
do:
 if \{B_1, ..., B_n\} \rightarrow C is in F and \{B_1, ..., B_n\}
\ldots, B_n \subseteq X:
    then add C to X.
Return X as X<sup>+</sup>
\{name\} \rightarrow \{color\}
{category} \rightarrow {dept}
{color, category} \rightarrow
{price}
```

F =

```
{name, category}+ =
{name, category}
```

Start with $X = \{A_1, ..., A_n\}$, FDs F. **Repeat until** X doesn't change; do: if $\{B_1, ..., B_n\} \rightarrow C$ is in F and $\{B_1, ..., B_n\}$ \ldots , B_n \subseteq X: then add C to X. Return X as X⁺ $\{name\} \rightarrow \{color\}$ {category} \rightarrow {dept} {color, category} \rightarrow {price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

Start with X = {A₁, ..., A_n}, FDs F. **Repeat until** X doesn't change; **do**: **if** {B₁, ..., B_n} \rightarrow C is in F **and** {B₁, ..., B_n} \subseteq X: **then** add C to X.

Return X as X⁺

F =

 $\{name\} \rightarrow \{color\}$

{category} \rightarrow {dept}

{color, category} → {price}

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

Start with $X = \{A_1, ..., A_n\}$, FDs F. **Repeat until** X doesn't change; do: if $\{B_1, ..., B_n\} \rightarrow C$ is in F and $\{B_1, ..., B_n\}$ \ldots , B_n \subseteq X: then add C to X. Return X as X⁺ F = $\{name\} \rightarrow \{color\}$ {category} \rightarrow {dept} {color, category} \rightarrow {price}

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

{name, category}+ =
{name, category, color, dept,
price}

EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

}

}

Compute $\{A,B\}^+ = \{A, B, B, A, B,$

Compute $\{A, F\}^+ = \{A, F, F\}^+$

EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

}

}

Compute {A,B}⁺ = {A, B, C, D

Compute {A, F}⁺ = {A, F, B

EXAMPLE

R(A,B,C,D,E,F)

$$\{A,B\} \rightarrow \{C\} \\ \{A,D\} \rightarrow \{E\} \\ \{B\} \rightarrow \{D\} \\ \{A,F\} \rightarrow \{B\}$$

Compute $\{A,B\}^+ = \{A, B, C, D, E\}$

Compute $\{A, F\}^+ = \{A, B, C, D, E, F\}$

<u>3. CLOSURES, SUPERKEYS & KEYS</u>

What you will learn about in this section

- 1. Closures
- 2. Superkeys & Keys

Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if $X \to A$
 - 1. Compute X⁺
 - 2. Check if $A \in X^+$

Note here that **X** is a *set* of attributes, but **A** is a *single* attribute. Why does considering FDs of this form suffice?

Recall the <u>Split/combine</u> rule: $X \rightarrow A_1, ..., X \rightarrow A_n$ *implies* $X \rightarrow \{A_1, ..., A_n\}$

We did not include {B,C}, {B,D}, {C,D}, {B,C,D} to save some space.

Step 1: Compute X⁺, for every set of attributes X:

Example: Given F =

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $\{A,B\} \rightarrow \{C,D\}, \ \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \ \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

Step 1: Compute X⁺, for every set of attributes X:

 ${A}^{+} = {A}, {B}^{+} = {B,D}, {C}^{+} = {C}, {D}^{+} = {D}, {A,B}^{+} = {A,B,C,D}, {A,C}^{+} = {A,C}, {A,D}^{+} = {A,B,C,D}, {A,B,C}^{+} = {A,B,D}^{+} = {A,C,D}^{+} = {A,B,C,D}, {B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D}^{+} = {B,C,D}, {A,B,C,D}^{+} = {A,B,C,D$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. $Y \subseteq X^+$ and $X \cap Y = \emptyset$:

 $\{A,B\} \rightarrow \{C,D\}, \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

"Y is in the closure of X"

 $\{A,B\} \rightarrow C$

 $\{A,D\} \rightarrow B$

 $\{B\} \rightarrow D$

Example:

Given F =

Step 1: Compute X⁺, for every set of attributes X:

 $\{A\}^{+} = \{A\}, \{B\}^{+} = \{B,D\}, \{C\}^{+} = \{C\}, \{D\}^{+} = \{D\}, \{A,B\}^{+} = \{A,B,C,D\}, \{A,C\}^{+} = \{A,C\}, \{A,D\}^{+} = \{A,B,C,D\}, \{A,B,C\}^{+} = \{A,B,D\}^{+} = \{A,C,D\}^{+} = \{A,B,C,D\}, \{B,C,D\}^{+} = \{B,C,D\}, \{A,B,C,D\}^{+} = \{A,B,C,D\}$

Step 2: Enumerate all FDs X \rightarrow Y, s.t. Y \subseteq X⁺ and X \cap Y = \emptyset :

 $\{A,B\} \rightarrow \{C,D\}, \ \{A,D\} \rightarrow \{B,C\}, \\ \{A,B,C\} \rightarrow \{D\}, \ \{A,B,D\} \rightarrow \{C\}, \\ \{A,C,D\} \rightarrow \{B\}$

 $\begin{array}{c} \{A,B\} \rightarrow C \\ \{A,D\} \rightarrow B \\ \{B\} \rightarrow D \end{array}$

Example:

Given F =

The FD X \rightarrow Y is non-trivial

Superkeys and Keys

Keys and Superkeys

A <u>superkey</u> is a set of attributes $A_1, ..., A_n$ s.t. for *any other* attribute **B** in R, we have $\{A_1, ..., A_n\} \rightarrow B$

I.e. all attributes are functionally determined by a superkey

A <u>key</u> is a *minimal* superkey

Meaning that no subset of a key is also a superkey

Finding Keys and Superkeys

- For each set of attributes X
 - 1. Compute X⁺
 - 2. If X⁺ = set of all attributes then X is a **superkey**
 - 3. If X is minimal, then it is a **key**

Do we need to check all sets of attributes?

Example of Finding Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

What is a key?

Example of Keys

Product(name, price, category, color)

{name, category} → price
{category} → color

Acknowledgement

Some of these slides are taken from cs145 course offered by Stanford University.