
Database Design: Normalization



Agenda

1. Database Design

2. Normal forms & functional dependencies

3. Finding functional dependencies

4. Closures, superkeys & keys



Design Theory
 The biggest problem needed to be solved in database is data redundancy.
 Why data redundancy is the problem? Because it causes:

 Insert Anomaly  

 Update Anomaly  

 Delete Anomaly

 Design theory is about how to represent your data to avoid anomalies.

 Achieved by Data Normalization, a process of analyzing a  relation to ensure 

that it is well formed.

 Normalization involves decomposing relations with  anomalies to produce 

smaller well structured relations.

 If a relation is normalized (or well formed), rows can be inserted, deleted and 
modified without creating anomalies.



Data Anomalies & Constraints



Constraints Prevent (some)  
Anomalies in the Data

RoomCourseStudent
101CSC261Mary
101CSC261Joe
101CSC261Sam
......

If every course is  in only one room,  
contains  redundant information!

A poorly designed database causes
anomalies:



Constraints Prevent (some)  
Anomalies in the Data

RoomCourseStudent
101CSC261Mary
703CSC261Joe
101CSC261Sam
......

If we update the  room number for one tuple, we 
get inconsistent data = an update anomaly

A poorly designed database causes
anomalies:



Constraints Prevent (some)  
Anomalies in the Data

Student Course Room
.. .. ..

If everyone drops the class, we lose what  
room the class is in! = a delete anomaly

A poorly designed database causes
anomalies:



Constraints Prevent (some)  
Anomalies in the Data

Similarly, we  
can’t reserve a  
room without  
students = an  
insert anomaly

A poorly designed database causes
anomalies:

RoomCourseStudent
B01CSC261Mary
B01CSC261Joe
B01CSC261Sam
......… CSC461 703



Constraints Prevent (some)  
Anomalies in the Data

CourseStudent
CSC261Mary
CSC261Joe
CSC261Sam
....

RoomCourse
101CSC261
601CSC257

Today: develop theory to understand why this design  
may be better and how to find this decomposition…

Is this form better?

• Redundancy?
• Update anomaly?
• Delete anomaly?
• Insert anomaly?



Anomalies are problems caused by bad database design.

Example:

ACTIVITY(StudentID, Activity, Fee)

An insertion anomaly occurs when a row cannot be added to a 

relation, because not all data are available (or one has  to invent “dummy” data)

 Example: we want to store that scuba diving costs $175, but have no place to put 

this information until a student takes up scuba-diving (unless we create a fake 

student)

A deletion anomaly occurs when data is deleted from a relation, and other critical data 
are unintentionally lost
 Example: if we delete the record with StudentID =  100, we forget that skiing costs 

$200
An update anomaly occurs when one must make many changes to reflect the 
modification of a single datum

 Example: if the cost of swimming changes, then all  entries with swimming 
Activity must be changed too

Database Anomalies
Example 2 FeeActivityStudentID

200Skiing100

65Golf100

50Squash175

50Swimming175

50Swimming200

65Golf200

ACTIVITY Relation



Anomalies are primarily caused by:

1. Data redundancy: replication of the same field in multiple tables, other than foreign 

keys

2. Functional dependencies including:

 Partial dependency

 Transitive dependency

 Multi-value dependency

Cause of Anomalies



Functional Dependencies



Functional Dependencies for Dummies

• A relationship between attributes where one attribute (or  
group of attributes) determines the value of another  
attribute (or group of attributes) in the same table.

• Example:
SSN uniquely identify any Person

(SSN)  (First Name, Last Name)



Candidate Keys/Primary Keys and Functional Dependencies

By definition:
• A candidate key of a relation functionally determines all

other non-key attributes in the row.

Implies:
• A primary key of a relation functionally determines all other  

non-key attributes in the row.

EmployeeID  (EmployeeName, EmpPhone)



Functional Dependency

A B means that
“whenever two tuples agree on A then they agree on B.”

Def: Let A, B be sets of attributes, we write A  B or say 
A functionally determines B if, for any tuples t1 and t2:

t1[A] = t2[A] implies t1[B] = t2[B]  and we 

call A  B a functional dependency

It is a determinant set.A

It is a dependent attribute.B

A functionally determines B.
B is a functionally dependent on A.{A → B}



A Picture of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A = {A1,…,Am}
and B = {B1,…Bn} in R,



A Picture of FDs

A1 … Am B1 … Bn

Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B  
on R holds if for any ti, tj in R:



Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B  
on R holds if for any ti,tj in R:

ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND …
AND ti[Am] = tj[Am]

A1 … Am B1 … Bn

If t1, t2 agree here..

ti

tj

A Picture of FDs



Defn (again):
Given attribute sets A={A1,…,Am}
and B = {B1,…Bn} in R,

The functional dependency A B  
on R holds if for any ti,tj in R:

if ti[A1] = tj[A1] AND ti[A2]=tj[A2] AND
… AND ti[Am] = tj[Am]

then ti[B1] = tj[B1] AND ti[B2]=tj[B2]  
AND … AND ti[Bn] = tj[Bn]

A1 … Am B1 … Bn

ti

tj

If t1,t2 agree here.. …they also agree here!

A Picture of FDs



FDs for Relational Schema Design

High-level idea: why do we care aboutFDs?

1. Start with some relational schema (e.g., design by ER diagram)

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
• One which minimizes the possibility of anomalies



Functional Dependencies as Constraints

RoomCourseStudent
B01CS145Mary
B01CS145Joe
B01CS145Sam

......

Note: The FD
{Course} -> {Room} holds on  
this instance

A functional dependency is a form  of
constraint

• Holds on some instances not others.

• Part of the schema, helps define  a valid
instance.

Recall: an instance of a schema is a multiset of  
tuples conforming to that schema, i.e. a table



Functional Dependencies as Constraints

RoomCourseStudent
B01CS145Mary
B01CS145Joe
B01CS145Sam

......

However, cannot prove that the
FD {Course} -> {Room} is part of
the schema

Note that:
• You can check if an FD is  

violated by examining a single  
instance;

• However, you cannot prove  
that an FD is part of the  
schema by examining a single  
instance.
• This would require checking  

every valid instance



More Examples

An FD is a constraint which holds, or does not hold on  
an instance:

PositionPhoneNameEmpID
Clerk1234SmithE0045

Salesrep9876MikeE3542
Salesrep9876SmithE1111
Lawyer1234MaryE9999



{Position}  {Phone}

PositionPhoneNameEmpID
Clerk1234SmithE0045

Salesrep9876MikeE3542
Salesrep9876SmithE1111
Lawyer1234MaryE9999

More Examples



EmpID Name Phone Position

E0045 Smith 1234  Clerk

E3542 Mike 9876 Salesrep

E1111 Smith 9876 Salesrep

E9999 Mary 1234  Lawyer

but not {Phone}  {Position}

More Examples



ACTIVITY

EDCBA
63421
81523
75441
63421
81523

Find at least three FDs which  
hold on this instance:

} {C}{A
} {C}{A,B
} {D}{E



Armstrong inference rules

 Armstrong's Axioms is a set of rules.
 It provides a simple technique for reasoning about functional 

dependencies.
 It was developed by William W. Armstrong in 1974.
 It is used to infer all the functional dependencies on a relational 

database.



Armstrong inference rules

A. Primary Rules:

Reflexivity
If A is a set of aƩributes and B is a subset of A, then A holds B. { A → B }
(If B A, then A→B)

Rule 1

Augmentation
If A hold B and C is a set of aƩributes, then AC holds BC. {AC → BC}
(If A→B, then AC→BC for any C)
It means that attribute in dependencies does not change the basic 

dependencies.

Rule 2

Transitivity
If A holds B and B holds C, then A holds C.
If {A → B} and {B → C}, then {A → C}
A holds B {A → B} means that A funcƟonally determines B.

Rule 3



Armstrong inference rules

B. Secondary Rules:

Union
If A holds B and A holds C, then A holds BC.
If {A → B} and {A → C}, then {A → BC}

Rule 1

Decomposition
If A holds BC and A holds B, then A holds C.
If {A → BC}, then {A → B} and {A → C}

Rule 2

Pseudo Transitivity
If A holds B and BC holds D, then AC holds D.
If {A → B} and {BC → D}, then {AC → D}

Rule 3



Armstrong inference rules

B. Secondary Rules:

Self determination
{A → A} for any A. This follows directly from the axiom of reflexivity. Rule 4

Composition
If A holds B and X holds Y, then AX holds BY.
If {A → B} and {X → Y}, then {AX → BY}

Rule 5

Extensivity
The following property is a special case of augmentation when C = A

If A holds C, then A holds AC.
If {A → C} then {A → AC}

Rule 6



Armstrong inference rules

Axioms are both
Sound:
when applied to a set of functional dependencies they only 
produce dependency tables that belong to the transitive closure 
of that set

Complete:
can produce all dependency tables that belong to the transitive 
closure of the set 



Armstrong inference rules

Three last rules can be derived from the first three (the axioms)
Let us look at the union rule:

if X→Y and X→Z, the X→YZ
Using the first three axioms, we have:

if X→Y, then XX→XY same as X→XY (2nd)
if X→Z, then YX→YZ same as XY→YZ (2nd)
if X→XY and XY→YZ, then X→YZ (3rd)



Example:
Consider relation E = (P, Q, R, S, T, U) having set of Functional Dependencies (FD).
P → Q P → R 
QR → S Q → T 
QR → U PR → U

Calculate some members of axioms are as follows:
1. P → T
2. PR → S 
3. QR → SU
4. PR → SU

Axioms:
Reflexivity: if YX, then X→Y
AugmentaƟon: if X→Y, then WX→WY
TransiƟvity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
DecomposiƟon: if X→YZ, then X→Y and X→Z
Pseudo transiƟvity: if X→Y and WY→Z, then XW→Z



Solution:

1. P → T
In the FD set, P → Q and Q → T
So, Using TransiƟve Rule: If {A → B} and {B → C}, then {A → C}

If P → Q and Q → T, then P → T.

2. PR → S
In the above FD set, P → Q
As, QR → S
So, Using Pseudo TransiƟvity Rule: If{A → B} and {BC → D}, then {AC → D}

If P → Q and QR → S, then PR → S.

3. QR → SU
In above FD set, QR → S and QR → U
So, Using Union Rule: If{A → B} and {A → C}, then {A → BC}

If QR → S and QR → U, then QR → SU.

4. PR → SU
So, Using Pseudo TransiƟvity Rule: If{A → B} and {BC → D}, then {AC → D}

If PR → S and PR → U, then PR → SU.

Axioms:
Reflexivity: if YX, then X→Y
AugmentaƟon: if X→Y, then WX→WY
TransiƟvity: if X→Y and Y→Z, then X→Z

Derived Rules:
Union: if X→Y and X→Z, the X→YZ
DecomposiƟon: if X→YZ, then X→Y and X→Z
Pseudo transiƟvity: if X→Y and WY→Z, then XW→Z



Trivial Functional Dependency

If A holds B {A → B}, where B is a subset of A, then it is called a Trivial 
Functional Dependency. Trivial always holds Functional Dependency.Trivial

If A holds B {A → B}, where B is not a subset A, then it is called as a Non-
Trivial Functional Dependency.Non-Trivial



Normalization

https://www.youtube.com/watch?v=UrYLYV7WSHM
https://www.youtube.com/watch?v=l5DCnCzDb8g



Normalization

 Normalization is the process of removing redundant data from your 

tables to improve storage efficiency, data integrity, and scalability.

 Normalization generally involves splitting existing tables into multiple 

ones, which must be re-joined or linked each time a query is issued.

 Why normalization?

 The relation derived from the user view or data store will most 

likely be unnormalized.

 The problem usually happens when an existing system uses 

unstructured file, e.g. in MS Excel.



Unnormalized Form (table)
Example



Normalization Example

• (Student ID)  (Student Name, DormName, DormCost)

• However, if
– (DormName)  (DormCost)

Then, DormCost should be put into its own relation, resulting  
in:
(Student ID)  (Student Name, DormName)  
(DormName)  ( DormCost)



Normalization Example

• (AttorneyID, ClientID)  (ClientName, MeetingDate,  
Duration)

• However, if
– ClientID  ClientName

• Then: ClientName should be in its own relation:

• (AttorneyID, ClientID)  (MeetingDate, Duration)
• (ClientID)  (ClientName)



Steps of Normalization

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)
 Boyce-Codd Normal Form (BCNF)

 Fourth Normal Form (4NF)
 Fifth Normal Form (5NF)

 Domain Key Normal Form (DKNF)

In practice, 1NF, 2NF, 3NF, and BCNF are enough for
database.



Normal Forms

• 1st Normal Form (1NF) = All tables are flat

• 2nd Normal Form (2NF)

• 3rd Normal Form (3NF)

• Boyce-Codd Normal Form (BCNF)

• 4th and 5th Normal Forms = see text books

DB designs based on  
functional dependencies,  
intended to prevent data  
anomalies



First Normal Form (1NF)

The official qualifications for 1NF are:
1. Each attribute name must be unique.
2. Each attribute value must be single.
3. Each row must be unique.
4. There is no repeating groups.

Additional:
Choose a primary key.

Reminder:
A primary key is unique, not null, unchanged. A primary  

key can be either an attribute or combined attributes.



1st Normal Form(1NF)

CoursesStudent
{CS145, CS229}Mary
{CS145, CS106}Joe

……

Violates 1NF.

1NF Constraint: Types must be atomic!

CoursesStudent
CS145Mary
CS229Mary
CS145Joe
CS106Joe

In 1st NF



First Normal Form (1NF) (Cont.)

Example of a table not in 1NF :

It violates the 1NF because:
 Attribute values are not single.
 Repeating groups exists.

ScoreStudentTopicGroup

marks18Sok SanIntro MongoDBGroup A

marks17Sao Ry

marks19Chan TinaIntro MySQLGroup B
marks16Tith Sophea



First Normal Form (1NF) (Cont.)

 After eliminating:

 Now it is in 1NF.
However, it might still violate 2NF and so on.

ScoreGiven NameFamily NameTopicGroup

18SanSokIntro MongoDBA

17RySaoIntro MongoDBA

19TinaChanIntro MySQLB

16SopheaTithIntro MySQLB



Functional Dependencies

We say an attribute, B, has a functional dependency on another
attribute, A, if for any two records, which have the same value
for A, then the values for B in these two records must be the
same. We illustrate this as:

A B (read as: A determines B or B depends on A)

Employee_name Email_address

Email_addressProjectEmployee_name

soksan@yahoo.comPOS Mart SysJoe San

sao@yahoo.comUniv Mgt SysSao Ry

soksan@yahoo.comWeb RedesignJoe San

chan@gmail.comPOS Mart SysChan Sokna

sao@yahoo.comDB DesignSao Ry



Functional Dependencies (cont.)

EmpLnameEmpFnameEmpEmailEmpNum
DoeJohnjdoe@abc.com123

SmithPeterpsmith@abc.com456
LeeAlanalee1@abc.com555
DoePeterpdoe@abc.com633
LeeAlanalee2@abc.com787

If EmpNum is the PK then the FDs:

EmpNum  EmpEmail, EmpFname, EmpLname

must exist.



Functional Dependencies (cont.)

EmpNum  EmpEmail, EmpFname, EmpLname

EmpNum
EmpEmail  

EmpFname

EmpLname

EmpNum EmpEmail EmpFname EmpLname

3 different ways  
you might see  
FDs depicted



Determinant

Functional Dependency

EmpNum  EmpEmail

Attribute on the left hand side is known as the
determinant

• EmpNum is a determinant of EmpEmail



Second Normal Form (2NF)

The official qualifications for 2NF are:

1. A table is already in 1NF.
2. All non-key attributes are fully dependent on the 

primary key.

All partial dependencies are removed to place in another 
table.



• Partial dependency is a functional dependency whose determinant is 
part of the primary key (but not all of it)

• Example: 

ACTIVITY(StudentID, Activity, Fee)

Partial Dependencies

StudentID

Fee

Activity

FeeActivityStudentID
200Skiing100
65Golf100
50Squash175
50Swimming175
50Swimming200

65Golf200



Course NameNum StudentSemesterIDCourseID

Database25201301IT101

Database25201302IT101

Web Prog30201301IT102

Web Prog35201302IT102

Networking20201401IT103

Example of a table not in 2NF:

The Course Name depends on only CourseID, a part of the primary key not the 
whole primary {CourseID, SemesterID}. It’s called partial dependency.

Solution:
Remove CourseID and Course Name together to create a new table.

Primary Key



Course NameCourseID

DatabaseIT101

DatabaseIT101

Web ProgIT102

Web ProgIT102

NetworkingIT103

Done? 
Oh no, it is still not in 
1NF yet.
Remove the repeating 
groups too.
Finally, connect the
relationship.

CourseID Course Name

IT101 Database

IT102 Web Prog

IT103 Networking

C ourseID SemesterID Num Student

IT101 201301 25

IT101 201302 25

IT102 201301 30

IT102 201302 35

IT103 201401 20



Third Normal Form (3NF)

The official qualifications for 3NF are:
1. A table is already in 2NF.
2. Nonprimary key attributes do not depend on other  

nonprimary key attributes
(i.e. no transitive dependencies)
All transitive dependencies are removed to place 
in another table.



Transitive dependency is a functional dependency whose determinant is 
not the primary key, part of the  primary key, or a candidate key.

Transitive functionality is a functional dependency in which a non-key 
attribute is determined by another non-key attribute. 

Example: 

ACTIVITY(StudentID, Activity, Fee)

Transitive Dependencies

FeeActivityStudentID
200Skiing100
65Golf100
50Squash175
50Swimming175
50Swimming200

65Golf200



TeacherTelTeacherNameCourseNameStudyID

012 123 456Sok PisethDatabase1

0977 322 111Sao KanhaDatabase2

012 412 333Chan VeasnaWeb Prog3

012 412 333Chan VeasnaWeb Prog4

077 545 221Pou SambathNetworking5

Example of a Table not in 3NF:

Primary Key
The TeacherTel is a nonkey attribute, and the 
TeacherName is also a nonkey attribute. But 
TeacherTel depends on TeacherName.
It is called transitive dependency.

Solution:
Remove Teacher Name and TeacherTel together to create a 
new table.



Teacher TelTeacher Name

012 123 456Sok Piseth

0977 322 111Sao Kanha

012 412 333Chan Veasna

012 412 333Chan Veasna

077 545 221Pou Sambath

Done?
Oh no, it is still not in 1NF yet.  

Remove Repeating row.

Teacher TelTeacher Name

012 123 456Sok Piseth

0977 322 111Sao Kanha

012 412 333Chan Veasna

077 545 221Pou Sambath

Teacher TelTeacher NameID

012 123 456Sok PisethT1

0977 322 111Sao KanhaT2

012 412 333Chan VeasnaT3

077 545 221Pou SambathT4

StudyID C ourse N ame T.ID

1 Database T1

2 Database T2

3 Web Prog T3

4 Web Prog T3

5 Networking T4

Note about primary key:
-In theory, you can choose
TeacherName to be a primary key.
-But in practice, you should add  
TeacherID as the primary key.



Boyce Codd Normal Form (BCNF) – 3.5NF

The official qualifications for BCNF are:
1. A table is already in 3NF.

2. All determinants must be superkeys.

All determinants that are not superkeys are removed to
place in another table.

K is a superkey for relation R if K functionally determines 
all of R.

K is a (candidate)key for R if K is a superkey, but no 
proper subset of K is a superkey.



Boyce Codd Normal Form (BCNF) (Cont.)

 Example of a table not in BCNF:

 Key: {Student, Course}
 Functional Dependency:
 {Student, Course}Teacher
 Teacher  Course

 Problem: Teacher is not a superkey but determines Course.

TeacherCourseStudent

JohnDBSok

WilliamDBSao

ToddE-CommerceChan

ToddE-CommerceSok

WilliamDBChan



Student Course

Sok DB

Sao DB

Chan E-Commerce

Sok E-Commerce

Chan DB

Course Teacher

DB John

DB W illiam

E-Commerce Todd

Course

DB

E-Commerce

Solution: Decouple a table  
contains Teacher and Course
from original table (Student, 
Course). Finally, connect the 
new and old table to third 
table contains Course.



Forth Normal Form (4NF)

The official qualifications for 4NF are:
1. A table is already in BCNF.

2. A table contains no multi-valued dependencies.

 Multi-valued dependency: MVDs occur when two or more independent multi 
valued facts about the same attribute occur within the same table.

A ->-> B (B multi-valued depends on A)



Example: MVD

Customer(name, addr, phones, drinksLiked)
A drinker’s phones are independent of the drinks they like.

name->->phones and name ->->drinksLiked.

Thus, each of a drinker’s phones appears with each of the drinks they like in 
all combinations.



Tuples Implied by name->->phones

If we have tuples:

name addr phones drinksLiked
sue a p1 d1
sue a p2 d2
sue a p2 d1
sue a p1 d2

Then these tuples must also be in the relation.



Picture of MVD X ->->Y

X Y others

equal

exchange



Forth Normal Form (4NF) (Cont.)

 Example of a table not in 4NF:

 Key: {Student, Major, Hobby}
 MVD: Student -->> Major, Hobby

HobbyMajorStudent

FootballITSok

VolleyballITSok

FootballITSao

FootballMedSao

NULLITChan

FootballNULLPuth

NULLNULLTith



MajorStudent

ITSok

ITSao

MedSao

ITChan

NULLPuth

NULLTith

Student

Sok

Sao

Chan

Puth

Tith
HobbyStudent

FootballSok

VolleyballSok

FootballSao

NULLChan

FootballPuth

NULLTith

Solution: Decouple to each  
table contains MVD. Finally,
connect each to a third table 
contains Student.



Fifth Normal Form (5NF)

The official qualifications for 5NF are:
1. A table is already in 4NF.

2. The attributes of multi-valued dependencies are not related.



Fifth Normal Form (5NF) (Cont.)

 Example of a table not in 5NF:

 Key: {Seller, Company, Product}

 MVD: Seller -->> Company, Product
 Product is related to Company.

ProductCompanySeller

ZenyaMIAF TradingSok

CokeCoca-Cola CorpSao

FantaCoca-Cola CorpSao

SpriteCoca-Cola CorpSao

Angkor BeerAngkor BreweryChan

Cambodia BeerCambodia BreweryChan



Seller C ompany

MIAF Trading

Sao Coca-Cola Corp

Chan Angkor Brewery

Chan Cambodia Brewery

Seller Product

Sok Zenya

Sao Coke

Sao Fanta

Sao Sprite

Chan Angkor Beer

Chan Cambodia  
Beer

C ompany Product

MIAF Trading Zenya

Coca-Cola Corp Coke

Coca-Cola Corp Fanta

Coca-Cola Corp Sprite

Angkor Brewery Angkor Beer

Cambodia  
Brewery

Cambodia  
Beer

Seller

Sok

Sao

Chan

C ompany

Coca-Cola Corp

Angkor Brewery

Cambodia Brewery

Product

Zenya

Coke

Fanta

Sprite

Angkor Beer

1

1

1

1

1 MIAF Trading

1

M Sok

M

M

M

M

M



FINDING FUNCTIONAL DEPENDENCIES



What you will learn about in this section

1. “Good” vs. “Bad” FDs: Intuition

2. Finding FDs

3. Closures



“Good” vs. “Bad” FDs

We can start to develop a notion of good vs. bad FDs:

PositionPhoneNameEmpID

Clerk1234SmithE0045

Salesrep9876MikeE3542

Salesrep9876SmithE1111

Lawyer1234MaryE9999

Intuitively:

EmpID -> Name, Phone,Position
is “good FD”
Minimal redundancy,  less 
possibility of  anomalies



We can start to develop a notion of good vs. bad FDs:

PositionPhoneNameEmpID

Clerk1234SmithE0045

Salesrep9876MikeE3542

Salesrep9876SmithE1111

Lawyer1234MaryE9999

Intuitively:

EmpID -> Name, Phone,  
Position is “good FD”

But Position -> Phone is a  
“bad FD”
Redundancy!  
Possibility of data  
anomalies

“Good” vs. “Bad” FDs



RoomCourseStudent
B01CS145Mary
B01CS145Joe
B01CS145Sam
......

Given a set of FDs (from user) our goal is to:
1. Find all FDs, and
2. Eliminate the “Bad Ones".

Returning to our original  
example… can you see how the  
“bad FD” {Course} -> {Room} could  
lead to an:

• Update Anomaly
• Insert Anomaly
• Delete Anomaly
• …

“Good” vs. “Bad” FDs



FDs for Relational Schema Design

• High-level idea: why do we care aboutFDs?

1. Start with some relational schema

2. Find out its functional dependencies (FDs)

3. Use these to design a better schema
1. One which minimizes possibility of anomalies



Finding Functional Dependencies

• There can be a very large number of FDs…
– How to find them all efficiently?

• We can’t necessarily show that any FD will hold on all  
instances…
– How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?



Equivalent to asking: Given a set of FDs, F  = {f1,…fn}, does an  
FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

PriceDepCategoryColorName
49ToysGadgetGreenGizmo
59ToysGadgetBlackWidget
99GardenWhatsitGreenGizmo

Which / how many other FDs do?!?

Provided FDs:Products

Given the provided FDs, we can see that {Name, Category}  {Price}  
must also hold on any instance…

Example:



Equivalent to asking: Given a set of FDs, F  = {f1,…fn}, does an  
FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called
Armstrong’s Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity… ideas by picture

Finding Functional Dependencies



1. Split/Combine (Decomposition & Union Rule)

A1 … Am B1 … Bn

A1, …, Am B1,…,Bn



1. Split/Combine (Decomposition & Union Rule)

A1 … Am B1 … Bn

A1, …, Am B1,…,Bn

… is equivalent to the following n FDs…  

A1,…,Am  Bi for i=1,…,n



1. Split/Combine (Decomposition & Union Rule)

A1 … Am B1 … Bn

And vice-versa, A1,…,Am  Bi for i=1,…,n

… is equivalent to …

A1, …, Am B1,…,Bn



2. Reduction/Trivial 
(Reflexive Rule)

A1 … Am

A1,…,Am  Aj for any j=1,…,m



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am  B1,…,Bn and  
B1,…,Bn C1,…,Ck



3. Transitive Rule

A1 … Am B1 … Bn C1 … Ck

A1, …, Am  B1,…,Bn and  
B1,…,Bn C1,…,Ck

implies  
A1,…,Am C1,…,Ck



Augmentation
Rule

A1 … Am B1 … Bn

A1, …, Am  B1,…,Bn implies



Augmentation
Rule

X1 A1 … Am B1 … Bn

A1, …, Am  B1,…,Bn  
implies
X1, A1, …, Am B1,…,Bn



Finding Functional
Dependencies

1. {Name}  {Color}
2. {Category}  {Department}
3. {Color, Category}  {Price}

PriceDepCategoryColorName
49ToysGadgetGreenGizmo
59ToysGadgetBlackWidget
99GardenWhatsitGreenGizmo

Which / how many other FDs hold?

Provided FDs:Products

Example:



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}  {Dept.}
3. {Color, Category}  {Price}

Which / how many other FDs hold?

Provided FDs:

Inferred FDs:

Example:

Rule usedInferred FD

?4. {Name, Category} -> {Name}
?5. {Name, Category} -> {Color}
?6. {Name, Category} -> {Category}
?7. {Name, Category} -> {Color, Category}
?8. {Name, Category} -> {Price}



Finding Functional Dependencies

1. {Name}  {Color}
2. {Category}{Dept.}
3. {Color, Category}{Price}

Can we find an algorithmic way to do  this?

Provided FDs:

Inferred FDs:

Example:

Rule usedInferred FD

Trivial4. {Name, Category} -> {Name}
Transitive (4 -> 1)5. {Name, Category} -> {Color}
Trivial6. {Name, Category} -> {Category}
Split/combine (5 + 6)7. {Name, Category} -> {Color,  Category}
Transitive (7 -> 3)8. {Name, Category} -> {Price}

Yes. But we need to learn about closures before  that!



Closures



Closure of a set of
Attributes

Given a set of attributes A1, …, An and a set of FDs F:
Then the closure, {A1, …, An}+ is the set of attributes B s.t. {A1, …, An}B

{name}  {color}
{category}  {department}
{color, category}  {price}

Example: F =

Example  
Closures:

{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}



Closure Algorithm

Start with X = {A1, …, An} and set of FDs F.

Repeat until X doesn’t change;

do:  

if {B1, …, Bn}  C is in F and {B1, …, Bn} X then  

add C to X.

Return X as X+



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}



Closure Algorithm

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}

F =

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}



Closure Algorithm

F =

{name, category}+ =
{name, category, color, dept,  
price}

{name, category}+ =
{name, category}

{name, category}+ =
{name, category, color}

{name, category}+ =
{name, category, color, dept}

Start with X = {A1, …, An}, FDs F.
Repeat until X doesn’t change;
do:

if {B1, …, Bn} C is in F and {B1,
…, Bn} X:

then add C to X.
Return X as X+

{name}  {color}

{category}  {dept}

{color, category} 
{price}



EXAMPLE

Compute {A,B}+ = {A, B, }

Compute {A, F}+ = {A, F, }

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D }

Compute {A, F}+ = {A, F,B }

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



EXAMPLE

Compute {A,B}+ = {A, B, C, D, E}

Compute {A, F}+ = {A, B, C, D, E, F}

R(A,B,C,D,E,F) {A,B}  {C}
{A,D}  {E}
{B}  {D}
{A,F}  {B}



3. CLOSURES, SUPERKEYS & KEYS



What you will learn about in this
section

1. Closures
2. Superkeys & Keys



Why Do We Need the Closure?

• With closure we can find all FD’s easily

• To check if X A

1. Compute X+

2. Check if A  X+

Note here that X is a set of  
attributes, but A is a single  
attribute. Why does considering  
FDs of this form suffice?

Recall the Split/combine rule:
X  A1, …, X  An
implies
X  {A1, …, An}



Using Closure to Infer 
ALLFDs

C{A,B}
B{A,D}
D{B}

Example: 
Given F =Step 1: Compute X+, for every set of attributes X:

{A}={A}+

{B,D}={B}+

{C}={C}+

{D}={D}+

{A,B,C,D}={A,B}+

{A,C}={A,C}+

{A,B,C,D}={A,D}+

{A,B,C}+ = {A,B,D}+ = {A,C,D}+ = {A,B,C,D}
{B,C,D}+ = {B,C,D}
{A,B,C,D}+ = {A,B,C,D}

No need to  
compute  
these- why?

We did not include {B,C},
{B,D}, {C,D}, {B,C,D} to save
some space.



Using Closure to Infer 
ALLFDs

C{A,B}
B{A,D}
D{B}

Example: 
Given F =Step 1: Compute X+, for every set of attributes X:

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}



Using Closure to Infer 
ALLFDs

C{A,B}
B{A,D}
D{B}

Example: 
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}

“Y is in the  
closure of  
X”

Step 1: Compute X+, for every set of attributes X:



Using Closure to Infer 
ALLFDs

C{A,B}
B{A,D}
D{B}

Example: 
Given F =

{A}+ = {A}, {B}+ = {B,D}, {C}+ = {C}, {D}+ =
{D}, {A,B}+ = {A,B,C,D}, {A,C}+ = {A,C},
{A,D}+ = {A,B,C,D}, {A,B,C}+ = {A,B,D}+ =
{A,C,D}+ = {A,B,C,D}, {B,C,D}+ = {B,C,D},
{A,B,C,D}+ = {A,B,C,D}

Step 2: Enumerate all FDs X  Y, s.t. Y  X+ and X  Y =:

{A,B}  {C,D}, {A,D}  {B,C},
{A,B,C}  {D}, {A,B,D}  {C},
{A,C,D}  {B}

The FD X Y  
is non-trivial

Step 1: Compute X+, for every set of attributes X:



Superkeys and Keys



Keys and Superkeys

A superkey is a set of attributes A1, …, An s.t.  
for any other attribute B in R,
we have {A1, …, An}  B

A key is a minimal superkey

I.e. all attributes are  
functionally  
determined by a  
superkey

Meaning that no subset  
of a key is also a  
superkey



Finding Keys and Superkeys

• For each set of attributes X

1. Compute X+

2. If X+ = set of all attributes then X is a superkey

3. If X is minimal, then it is a key

Do we need to check all  
sets of attributes?



Example of Finding Keys

Product(name, price, category, color)

{name, category}  price
{category}  color

What is a key?



Example of Keys

Product(name, price, category, color)

{name, category}  price
{category}  color

{name, category}+ = {name, price, category, color}

= the set of all attributes
this is a superkey
this is a key, since neither name nor

category alone is a superkey
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