Database Design: Normalization

Agenda

1. Database Design
2. Normal forms \& functional dependencies
3. Finding functional dependencies
4. Closures, superkeys \& keys

Design Theory

$>$ The biggest problem needed to be solved in database is data redundancy.
$>$ Why data redundancy is the problem? Because it causes:
> Insert Anomaly
> Update Anomaly
> Delete Anomaly
$>$ Design theory is about how to represent your data to avoid anomalies.
$>$ Achieved by Data Normalization, a process of analyzing a relation to ensure that it is well formed.
$>$ Normalization involves decomposing relations with anomalies to produce smaller well structured relations.
$>$ If a relation is normalized (or well formed), rows can be inserted, deleted and modified without creating anomalies.

Data Anomalies \& Constraints

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	101
Sam	CSC261	101
..

If every course is in only one room, contains redundant information!

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student	Course	Room
Mary	CSC261	101
Joe	CSC261	703
Sam	CSC261	101
..

If we update the room number for one tuple, we get inconsistent data = an update anomaly

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

Student	Course	Room
..

If everyone drops the class, we lose what room the class is in! = a delete anomaly

Constraints Prevent (some) Anomalies in the Data

A poorly designed database causes anomalies:

	Student	Course	Room
Mary	CSC261	B01	
\ldots	Joe	CSC261	B01
\ldots	CSC461	703	
Sam	CSC261	B01	
..	

Similarly, we can't reserve a room without students = an insert anomaly

Constraints Prevent (some) Anomalies in the Data

Student	Course
Mary	CSC261
Joe	CSC261
Sam	CSC261
..	..

Course	Room
CSC261	101
CSC257	601

Is this form better?

- Redundancy?
- Update anomaly?
- Delete anomaly?
- Insert anomaly?

Today: develop theory to understand why this design may be better and how to find this decomposition...

Database Anomalies Example 2

Anomalies are problems caused by bad database design.

Example:

ACTIVITY(StudentID, Activity, Fee)

An insertion anomaly occurs when a row cannot be added to a

ACTIVITY Relation

StudentID	Activity	Fee
100	Skiing	200
100	Golf	65
175	Squash	50
175	Swimming	50
200	Swimming	50
200	Golf	65

* Example: we want to store that scuba diving costs $\$ 175$, but have no place to put this information until a student takes up scuba-diving (unless we create a fake student)
A deletion anomaly occurs when data is deleted from a relation, and other critical data are unintentionally lost
* Example: if we delete the record with StudentID = 100, we forget that skiing costs \$200

An update anomaly occurs when one must make many changes to reflect the modification of a single datum

* Example: if the cost of swimming changes, then all entries with swimming Activity must be changed too

Cause of Anomalies

Anomalies are primarily caused by:

1. Data redundancy: replication of the same field in multiple tables, other than foreign keys
2. Functional dependencies including:
> Partial dependency
> Transitive dependency
> Multi-value dependency

Functional Dependencies

Functional Dependencies for Dummies

- A relationship between attributes where one attribute (or group of attributes) determines the value of another attribute (or group of attributes) in the same table.
- Example:

SSN uniquely identify any Person

$$
(\mathrm{SSN}) \rightarrow \text { (First Name, Last Name) }
$$

Candidate Keys/Primary Keys and Functional Dependencies

By definition:

- A candidate key of a relation functionally determines all other non-key attributes in the row.

Implies:

- A primary key of a relation functionally determines all other non-key attributes in the row.

EmployeeID \rightarrow (EmployeeName, EmpPhone)

Functional Dependency

Def: Let A, B be sets of attributes, we write $A \rightarrow B$ or say A functionally determines B if, for any tuples t_{1} and t_{2} :
$\mathrm{t}_{1}[\mathrm{~A}]=\mathrm{t}_{2}[\mathrm{~A}]$ implies $\mathrm{t}_{1}[\mathrm{~B}]=\mathrm{t}_{2}[\mathrm{~B}]$ and we
call $A \rightarrow B$ a functional dependency

$$
A \rightarrow B \text { means that }
$$

"whenever two tuples agree on A then they agree on B."

A It is a determinant set.
B It is a dependent attribute.
$\{A \rightarrow B\} \quad$ A functionally determines B.

A Picture of FDs

Defn (again):
Given attribute sets $A=\left\{A_{1}, \ldots, A_{m}\right\}$ and $B=\left\{B_{1}, \ldots B_{n}\right\}$ in R,

A Picture of FDs

Defn (again):
Given attribute sets $A=\left\{\mathbf{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\}$ and $B=\left\{B_{1}, \ldots B_{n}\right\}$ in R,

The functional dependency $\mathbf{A} \rightarrow \mathbf{B}$ on R holds if for any t_{i}, t_{j} in R :

A Picture of FDs

Defn (again):

Given attribute sets $A=\left\{A_{1}, \ldots, A_{m}\right\}$ and $\mathbf{B}=\left\{\mathbf{B}_{1}, \ldots \mathbf{B}_{n}\right\}$ in \mathbf{R},

The functional dependency $\mathbf{A} \rightarrow \mathbf{B}$ on R holds if for any $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}$ in R :
$\mathrm{t}_{\mathrm{i}}\left[\mathrm{A}_{1}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{1}\right]$ AND $\mathrm{t}_{[}\left[\mathrm{A}_{2}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{2}\right]$ AND ... AND $\mathrm{t}_{\mathrm{i}}\left[\mathrm{A}_{\mathrm{m}}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{\mathrm{m}}\right]$

[^0]
A Picture of FDs

Defn (again):
Given attribute sets $A=\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\}$ and $\mathbf{B}=\left\{\mathbf{B}_{1}, \ldots \mathbf{B}_{n}\right\}$ in \mathbf{R},

The functional dependency $\mathbf{A} \rightarrow \mathbf{B}$ on R holds if for any $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}$ in R :
if $\mathrm{t}_{\mathrm{i}}\left[\mathrm{A}_{1}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{1}\right]$ AND $\mathrm{t}_{\mathrm{i}}\left[\mathrm{A}_{2}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{2}\right]$ AND ... AND $\mathrm{t}_{\mathrm{i}}\left[\mathrm{A}_{\mathrm{m}}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{A}_{\mathrm{m}}\right]$
then $\mathrm{t}_{\mathrm{i}}\left[\mathrm{B}_{1}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{B}_{1}\right]$ AND $\mathrm{t}_{\mathrm{i}}\left[\mathrm{B}_{2}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{B}_{2}\right]$ AND ... AND $\mathrm{t}_{\mathrm{i}}\left[\mathrm{B}_{\mathrm{n}}\right]=\mathrm{t}_{\mathrm{j}}\left[\mathrm{B}_{\mathrm{n}}\right]$

FDs for Relational Schema Design

High-level idea: why do we care about FDs?

1. Start with some relational schema (e.g., design by ER diagram)
2. Find out its functional dependencies (FDs)
3. Use these to design a better schema

- One which minimizes the possibility of anomalies

Functional Dependencies as Constraints

A functional dependency is a form of constraint

- Holds on some instances not others.
- Part of the schema, helps define a valid instance.

Recall: an instance of a schema is a multiset of

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
..

Note: The FD
\{Course\} -> \{Room\} holds on
this instance

Functional Dependencies as Constraints

Note that:

- You can check if an FD is violated by examining a single instance;
- However, you cannot prove that an FD is part of the schema by examining a single instance.
- This would require checking every valid instance

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
..

However, cannot prove that the FD \{Course\} -> \{Room\} is part of the schema

More Examples

An FD is a constraint which holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

More Examples

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

\{Position $\} \rightarrow$ \{Phone $\}$

More Examples

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

$$
\text { but not }\{\text { Phone }\} \rightarrow \text { PPosition }\}
$$

ACTIVITY

A	B	C	D	E
1	2	4	3	6
3	2	5	1	8
1	4	4	5	7
1	2	4	3	6
3	2	5	1	8

Find at least three FDs which hold on this instance:

Armstrong inference rules

$>$ Armstrong's Axioms is a set of rules.
$>$ It provides a simple technique for reasoning about functional dependencies.
$>$ It was developed by William W. Armstrong in 1974.
$>$ It is used to infer all the functional dependencies on a relational database.

Armstrong inference rules

A. Primary Rules:

	Reflexivity
Rule 1	If A is a set of attributes and B is a subset of A, then A holds $B .\{A \rightarrow B\}$ (If $B \subseteq A$, then $A \rightarrow B$)
Rule 2	Augmentation If A hold B and C is a set of attributes, then $A C$ holds $B C$. $\{A C \rightarrow B C\}$ (If $A \rightarrow B$, then $A C \rightarrow B C$ for any C) It means that attribute in dependencies does not change the basic dependencies.
Rule 3	Transitivity If A holds B and B holds C, then A holds C. If $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$ A holds $B\{A \rightarrow B\}$ means that A functionally determines B.

Armstrong inference rules

B. Secondary Rules:

Union

Rule 1 If A holds B and A holds C, then A holds $B C$. If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow B C\}$

Decomposition

Rule 2 If A holds $B C$ and A holds B, then A holds C. If $\{A \rightarrow B C\}$, then $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$

Pseudo Transitivity

Rule 3 If A holds B and BC holds D , then AC holds D . If $\{A \rightarrow B\}$ and $\{B C \rightarrow D\}$, then $\{A C \rightarrow D\}$

Armstrong inference rules

B. Secondary Rules:

```
Rule 4 Self determination
    {A A A for any A. This follows directly from the axiom of reflexivity.
    Composition
Rule 5 If A holds B and X holds Y, then AX holds BY.
    If {A->B} and {X->Y}, then {AX }->\textrm{BY}
```


Extensivity

```
Rule 6
The following property is a special case of augmentation when \(C=A\) If \(A\) holds \(C\), then \(A\) holds \(A C\).
If \(\{A \rightarrow C\}\) then \(\{A \rightarrow A C\}\)
```


Armstrong inference rules

Axioms are both

Sound:

when applied to a set of functional dependencies they only produce dependency tables that belong to the transitive closure of that set

Complete:
can produce all dependency tables that belong to the transitive closure of the set

Armstrong inference rules

Three last rules can be derived from the first three (the axioms) Let us look at the union rule:
if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow Y Z$
Using the first three axioms, we have:
if $X \rightarrow Y$, then $X X \rightarrow X Y$ same as $X \rightarrow X Y\left(2^{\text {nd }}\right)$
if $X \rightarrow Z$, then $Y X \rightarrow Y Z$ same as $X Y \rightarrow Y Z$ (2 $\left.{ }^{\text {nd }}\right)$
if $X \rightarrow X Y$ and $X Y \rightarrow Y Z$, then $X \rightarrow Y Z$ ($\left.3^{\text {rd }}\right)$

Example:

Consider relation $\mathrm{E}=(\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{U})$ having set of Functional Dependencies (FD).
$P \rightarrow Q \quad P \rightarrow R$
$Q R \rightarrow S \quad Q \rightarrow T$
$Q R \rightarrow U \quad P R \rightarrow U$

Calculate some members of axioms are as follows:

1. $\mathrm{P} \rightarrow \mathrm{T}$
2. $P R \rightarrow S$
3. $\mathrm{QR} \rightarrow \mathrm{SU}$
4. $P R \rightarrow S U$

Axioms:

Reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$
Augmentation: if $X \rightarrow Y$, then $W X \rightarrow W Y$
Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Derived Rules:

Union: if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow Y Z$
Decomposition: if $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
Pseudo transitivity: if $X \rightarrow Y$ and $W Y \rightarrow Z$, then $X W \rightarrow Z$

Reflexivity: if $Y \subseteq X$, then $X \rightarrow Y$
Augmentation: if $X \rightarrow Y$, then $W X \rightarrow W Y$
Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$

Solution:

1. $\mathrm{P} \rightarrow \mathrm{T}$

Derived Rules:
Union: if $X \rightarrow Y$ and $X \rightarrow Z$, the $X \rightarrow Y Z$
Decomposition: if $X \rightarrow Y Z$, then $X \rightarrow Y$ and $X \rightarrow Z$
Pseudo transitivity: if $X \rightarrow Y$ and $W Y \rightarrow Z$, then $X W \rightarrow Z$
In the FD set, $\mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{Q} \rightarrow \mathrm{T}$
So, Using Transitive Rule: If $\{A \rightarrow B\}$ and $\{B \rightarrow C\}$, then $\{A \rightarrow C\}$
\therefore If $\mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{Q} \rightarrow \mathrm{T}$, then $\mathrm{P} \rightarrow \mathrm{T}$.
2. $P R \rightarrow S$

In the above FD set, $\mathrm{P} \rightarrow \mathrm{Q}$
As, QR \rightarrow S
So, Using Pseudo Transitivity Rule: If $\{A \rightarrow B\}$ and $\{B C \rightarrow D\}$, then $\{A C \rightarrow D\}$
\therefore If $\mathrm{P} \rightarrow \mathrm{Q}$ and $\mathrm{QR} \rightarrow \mathrm{S}$, then $\mathrm{PR} \rightarrow \mathbf{S}$.
3. $\mathrm{QR} \rightarrow \mathrm{SU}$

In above FD set, $\mathrm{QR} \rightarrow \mathrm{S}$ and $\mathrm{QR} \rightarrow \mathrm{U}$
So, Using Union Rule: If $\{A \rightarrow B\}$ and $\{A \rightarrow C\}$, then $\{A \rightarrow B C\}$
\therefore If QR $\rightarrow \mathrm{S}$ and $\mathrm{QR} \rightarrow \mathrm{U}$, then $\mathrm{QR} \rightarrow \mathrm{SU}$.
4. PR \rightarrow SU

So, Using Pseudo Transitivity Rule: If\{A $\rightarrow B\}$ and $\{B C \rightarrow D\}$, then $\{A C \rightarrow D\}$
\therefore If $\mathrm{PR} \rightarrow \mathrm{S}$ and $\mathrm{PR} \rightarrow \mathrm{U}$, then $\mathrm{PR} \rightarrow \mathrm{SU}$.

Trivial Functional Dependency

Trivial
If A holds $B\{A \rightarrow B\}$, where B is a subset of A, then it is called a Trivial Functional Dependency. Trivial always holds Functional Dependency.

Non-Trivial
If A holds $B\{A \rightarrow B\}$, where B is not a subset A, then it is called as a NonTrivial Functional Dependency.

Normalization

https://www.youtube.com/watch?v=UrYLYV7WSHM
https://www.youtube.com/watch?v=15DCnCzDb8g

Normalization

> Normalization is the process of removing redundant data from your tables to improve storage efficiency, data integrity, and scalability.
> Normalization generally involves splitting existing tables into multiple ones, which must be re-joined or linked each time a query is issued.
> Why normalization?
> The relation derived from the user view or data store will most likely be unnormalized.
> The problem usually happens when an existing system uses unstructured file, e.g. in MS Excel.

Unnormalized Form (table) Example

ClientRental

clientNo	cName	propertyNo	pAddress	rentStart	rentFinish	rent	ownerNo	oName
CR76	John Kay	PG4	6 Lawrence St, Glasgow	1-Jul-03	31-Aug-04	350	CO40	Tina Murphy
		PG16	5 Novar Dr, Glasgow	1-Sep-04	1-Sep-05	450	CO93	Tony Shaw
CR56	Aline Stewart	PG4	6 Lawrence St, Glasgow	1-Sep-02	10-June-03	350	CO40	Tina Murphy
		PG36	2 Manor Rd, Glasgow	10-Oct-03	1-Dec-04	375	CO 93	Tony Shaw
		PG16	5 Novar Dr, Glasgow	1-Nov-05	10-Aug-06	450	CO93	Tony Shaw

Normalization Example

- (Student ID) \rightarrow (Student Name, DormName, DormCost)
- However, if
- (DormName) \rightarrow (DormCost)

Then, DormCost should be put into its own relation, resulting in:
(Student ID) \rightarrow (Student Name, DormName)
(DormName) \rightarrow (DormCost)

Normalization Example

- (AttorneyID, ClientID) \rightarrow (ClientName, MeetingDate, Duration)
- However, if
- ClientID \rightarrow ClientName
- Then: ClientName should be in its own relation:
- (AttorneyID, ClientID) \rightarrow (MeetingDate, Duration)
- (ClientID) \rightarrow (ClientName)

Steps of Normalization

\checkmark First Normal Form (1NF)
\checkmark Second Normal Form (2NF)
\checkmark Third Normal Form (3NF)
\checkmark Boyce-Codd Normal Form (BCNF)
\checkmark Fourth Normal Form (4NF)
\checkmark Fifth Normal Form (5NF)
\checkmark Domain Key Normal Form (DKNF)
In practice, 1NF, 2NF, 3NF, and BCNF are enough for database.

Normal Forms

- $\underline{1 s}^{\text {st }}$ Normal Form (1NF) $=$ All tables are flat
- $\underline{2}^{\text {nd }}$ Normal Form (2NF)
- 3rd Normal Form (3NF)
- Boyce-Codd Normal Form (BCNF)
- $4^{\text {th }}$ and $5^{\text {th }}$ Normal Forms $=$ see text books

DB designs based on functional dependencies, intended to prevent data anomalies

First Normal Form (1NF)

The official qualifications for 1 NF are:

1. Each attribute name must be unique.
2. Each attribute value must be single.
3. Each row must be unique.
4. There is no repeating groups.

Additional:
Choose a primary key.
Reminder:
A primary key is unique, not null, unchanged. A primary key can be either an attribute or combined attributes.

$1^{\text {st }}$ Normal Form (1NF)

Student	Courses
Mary	$\{$ CS145, CS229 $\}$
Joe	$\{$ CS145, CS106\}
\ldots	\ldots

Violates 1NF.

Student	Courses
Mary	CS145
Mary	CS229
Joe	CS145
Joe	CS106

In $1^{\text {st }} \mathrm{NF}$

1NF Constraint: Types must be atomic!

First Normal Form (1NF) (Cont.)

Example of a table not in 1 NF :

Group	Topic	Student	Score	
Group A	Intro MongoDB	Sok San	18	marks
		Sao Ry	17	marks
Group B	Intro MySQL	Chan Tina	19	marks
		Tith Sophea	16	marks

It violates the 1NF because:
$>$ Attribute values are not single.
> Repeating groups exists.

First Normal Form (1NF) (Cont.)

> After eliminating:

Group	Topic	Family Name	Given Name	Score
A	Intro MongoDB	Sok	San	18
A	Intro MongoDB	Sao	Ry	17
B	Intro MySQL	Chan	Tina	19
B	Intro MySQL	Tith	Sophea	16

$>$ Now it is in 1 NF . However, it might still violate 2 NF and so on.

Functional Dependencies

We say an attribute, B , has a functional dependency on another attribute, A, if for any two records, which have the same value for A, then the values for B in these two records must be the same. We illustrate this as:

$$
A \rightarrow B \quad(\text { read as: } A \text { determines } B \text { or } B \text { depends on } A)
$$

Employee_name	Project	Email_address
Joe San	POS Mart Sys	soksan@yahoo.com
Sao Ry	Univ Mgt Sys	sao@yahoo.com
Joe San	Web Redesign	soksan@yahoo.com
Chan Sokna	POS MartSys	chan@gmail.com
Sao Ry	DB Design	sao@yahoo.com

Employee_name \rightarrow Email_address

Functional Dependencies (cont.)

EmpNum	EmpEmail	EmpFname	EmpLname
123	jdoe@abc.com	John	Doe
456	psmith@abc.com	Peter	Smith
555	alee1@abc.com	Alan	Lee
633	pdoe@abc.com	Peter	Doe
787	alee2@abc.com	Alan	Lee

If EmpNum is the PK then the FDs:

$$
\text { EmpNum } \rightarrow \text { EmpEmail, EmpFname, EmpLname }
$$ must exist.

Functional Dependencies (cont.)

EmpNum \rightarrow EmpEmail, EmpFname, EmpLname
3 different ways you might see FDs depicted

Determinant

Functional Dependency

EmpNum \rightarrow EmpEmail

Attribute on the left hand side is known as the determinant

- EmpNum is a determinant of EmpEmail

Second Normal Form (2NF)

The official qualifications for 2NF are:

1. A table is already in 1 NF .
2. All non-key attributes are fully dependent on the primary key.

All partial dependencies are removed to place in another table.

Partial Dependencies

- Partial dependency is a functional dependency whose determinant is part of the primary key (but not all of it)
- Example:

ACTIVITY(StudentID, Activity, Fee)

StudentID	Activity	Fee
100	Skiing	200
100	Golf	65
175	Squash	50
175	Swimming	50
200	Swimming	50
200	Golf	65

Example of a table not in 2NF:

CourseID	SemesterID	Num Student	Course Name
IT101	201301	25	Database
IT101	201302	25	Database
IT102	201301	30	Web Prog
IT102	201302	35	Web Prog
IT103	201401	20	Networking

The Course Name depends on only CourseID, a part of the primary key not the whole primary \{CourseID, SemesterID\}. It's called partial dependency.

Solution:

Remove CourseID and Course Name together to create a new table.

CourseID	Course Name
IT101	Database
IT101	Database
IT102	Web Prog
IT102	Web Prog
IT103	Networking

C ourselD	SemesterID	Num Student
IT101	201301	25
IT101	201302	25
IT102	201301	30
IT102	201302	35
IT103	201401	20
\underline{Y}		
CourselD	Course Name	
IT101	D atabase	
IT102	Web Prog	
IT103	Networking	

Third Normal Form (3NF)

The official qualifications for 3 NF are:

1. A table is already in 2NF.
2. Nonprimary key attributes do not depend on other nonprimary key attributes
(i.e. no transitive dependencies)

All transitive dependencies are removed to place in another table.

Transitive Dependencies

Transitive dependency is a functional dependency whose determinant is not the primary key, part of the primary key, or a candidate key.
Transitive functionality is a functional dependency in which a non-key attribute is determined by another non-key attribute.

Example:
ACTIVITY(StudentID, Activity, Fee)

StudentID	Activity	Fee
100	Skiing	200
100	Golf	65
175	Squash	50
175	Swimming	50
200	Swimming	50
200	Golf	65

Example of a Table not in 3NF:

StudyID	CourseName		TeacherName	TeacherTel
1	Database	Sok Piseth	012123456	
2	Database	Sao Kanha	0977322111	
3	Web Prog	Chan Veasna	012412333	
4	Web Prog	Chan Veasna	012412333	
5	Networking	Pou Sambath	077545221	

Primary Key
The TeacherTel is a nonkey attribute, and the TeacherName is also a nonkey attribute. But TeacherTel depends on TeacherName. It is called transitive dependency.

Solution:

Remove Teacher Name and TeacherTel together to create a new table.

Boyce Codd Normal Form (BCNF) - 3.5NF

The official qualifications for BCNF are:

1. A table is already in 3NF.
2. All determinants must be superkeys.

All determinants that are not superkeys are removed to place in another table.
K is a superkey for relation R if K functionally determines all of R.
K is a (candidate)key for R if K is a superkey, but no proper subset of K is a superkey.

Boyce Codd Normal Form (BCNF) (Cont.)

> Example of a table not in BCNF:

Student	Course	Teacher
Sok	DB	John
Sao	DB	William
Chan	E-Commerce	Todd
Sok	E-Commerce	Todd
Chan	DB	William

> Key: \{Student, Course\}
> Functional Dependency:
$>$ \{Student, Course $\} \rightarrow$ Teacher
$>$ Teacher \rightarrow Course
$>$ Problem: Teacher is not a superkey but determines Course.

Student	Course	Solution: Decouple a table contains Teacher and Course
Sok	DB	
Sao	DB	Course). Finally, connect the
Chan	E-Commerce	new and old table to third
Sok	E-Commerce	俍 contains Course.
Chan	DB	H- Course
		DB
		E-Commerce
Course	Teacher	+
DB	John	
DB	W illiam	
E-Commerce	Todd	
\nsucceq		

Forth Normal Form (4NF)

The official qualifications for 4NF are:

1. A table is already in BCNF.
2. A table contains no multi-valued dependencies.

- Multi-valued dependency: MVDs occur when two or more independent multi valued facts about the same attribute occur within the same table.
A ->-> B
(B multi-valued depends on A)

Example: MVD

Customer(name, addr, phones, drinksLiked)

A drinker's phones are independent of the drinks they like. name->->phones and name ->->drinksLiked.

Thus, each of a drinker's phones appears with each of the drinks they like in all combinations.

Tuples Implied by name->->phones

If we have tuples:

name	addr	phones	drinksLiked
sue	a	p 1	d 1
sue	a	p 2	d 2
sue	a	p 2	d 1
sue	a	p 1	d 2

Then these tuples must also be in the relation.

Picture of MVD X ->->Y

others

Forth Normal Form (4NF) (Cont.)

> Example of a table not in 4NF:

Student	Major	Hobby
Sok	IT	Football
Sok	IT	Volleyball
Sao	IT	Football
Sao	Med	Football
Chan	IT	NULL
Puth	NULL	Football
Tith	NULL	NULL

> Key: \{Student, Major, Hobby\}
> MVD: Student -->> Major, Hobby

Solution: Decouple to each table contains MVD. Finally, connect each to a third table contains Student.	Student	Major
	Sok	IT
	Sao	IT
	Sao	Med
Student	Chan	IT
Sok	Puth	NULL
Sao	Tith	NULL
Chan		
Puth	Student	Hobby
Tith	Sok	Football
	Sok	Volleyball
	Sao	Football
	Chan	NULL
	Puth	Football
	Tith	NULL

Fifth Normal Form (5NF)

The official qualifications for 5 NF are:

1. A table is already in $4 N F$.
2. The attributes of multi-valued dependencies are not related.

Fifth Normal Form (5NF) (Cont.)

> Example of a table not in 5NF:

Seller	Company	Product
Sok	MIAF Trading	Zenya
Sao	Coca-Cola Corp	Coke
Sao	Coca-Cola Corp	Fanta
Sao	Coca-Cola Corp	Sprite
Chan	Angkor Brewery	Angkor Beer
Chan	Cambodia Brewery	Cambodia Beer

$>$ Key: $\{$ Seller, Company, Product $\}$
> MVD: Seller -->> Company, Product
$>$ Product is related to Company.

FINDING FUNCTIONAL DEPENDENCIES

What you will learn about in this section

1. "Good" vs. "Bad" FDs: Intuition
2. Finding FDs
3. Closures

"Good" vs. "Bad" FDs

We can start to develop a notion of good vs. bad FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

> Intuitively:
> EmpID -> Name, Phone,Position is "good FD"
> Minimal redundancy, less possibility of anomalies

"Good" vs. "Bad" FDs

We can start to develop a notion of good vs. bad FDs:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

"Good" vs. "Bad" FDs

Student	Course	Room
Mary	CS145	B01
Joe	CS145	B01
Sam	CS145	B01
..

Returning to our original example... can you see how the "bad FD" \{Course\} -> \{Room\} could lead to an:

- Update Anomaly
- Insert Anomaly
- Delete Anomaly
- ...

Given a set of FDs (from user) our goal is to:

1. Find all FDs, and
2. Eliminate the "Bad Ones".

FDs for Relational Schema Design

- High-level idea: why do we care aboutFDs?

1. Start with some relational schema
2. Find out its functional dependencies (FDs)
3. Use these to design a better schema
4. One which minimizes possibility of anomalies

Finding Functional Dependencies

- There can be a very large number of FDs...
- How to find them all efficiently?
- We can't necessarily show that any FD will hold on all instances...
- How to do this?

We will start with this problem:
Given a set of FDs, F, what other FDs must hold?

Finding Functional Dependencies

Equivalent to asking: Given a set of $\mathrm{FDs}, \mathrm{F}=\left\{\mathrm{f}_{1}, \ldots \mathrm{f}_{\mathrm{n}}\right\}$, does an FD g hold?

Inference problem: How do we decide?

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

1. $\{$ Name $\} \rightarrow$ \{Color $\}$
2. \{Category\} \rightarrow \{Department\}
3. \{Color, Category\} \rightarrow \{Price $\}$

Given the provided FDs, we can see that \{Name, Category\} \rightarrow \{Price $\}$ must also hold on any instance...

Which / how many other FDs do?!?

Finding Functional Dependencies

Equivalent to asking: Given a set of FDs, $F=\left\{f_{1}, \ldots f_{n}\right\}$, does an FD g hold?

Inference problem: How do we decide?

Answer: Three simple rules called Armstrong's Rules.

1. Split/Combine,
2. Reduction, and
3. Transitivity... ideas by picture
4. Split/Combine (Decomposition \& Union Rule)

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}
$$

1. Split/Combine (Decomposition \& Union Rule)

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}
$$

... is equivalent to the following n FDs...

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{\mathrm{i}} \text { for } \mathrm{i}=1, \ldots, \mathrm{n}
$$

1. Split/Combine (Decomposition \& Union Rule)

And vice-versa, $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{B}_{\mathrm{i}}$ for $\mathrm{i}=1, \ldots, \mathrm{n}$
... is equivalent to ...
$A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$

2. Reduction/Trivial (Reflexive Rule)

$$
A_{1}, \ldots, A_{m} \rightarrow A_{j} \text { for any } j=1, \ldots, m
$$

3. Transitive Rule

	A_{1}	\cdots	A_{m}		\mathbf{B}_{1}	\cdots	\mathbf{B}_{n}		C_{1}	\ldots	C_{k}

$$
\begin{aligned}
& \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \text { and } \\
& \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}
\end{aligned}
$$

3. Transitive Rule

$\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}$ implies

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{k}}
$$

Augmentation Rule

	\mathbf{A}_{1}	\cdots	\mathbf{A}_{m}		\mathbf{B}_{1}	\ldots	\mathbf{B}_{n}		

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}} \text { implies }
$$

Augmentation Rule

$$
\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}
$$

implies

$$
\mathrm{X}_{1}, \mathrm{~A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}
$$

Finding Functional Dependencies

Example:

Products

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

Provided FDs:

1. $\{$ Name $\} \rightarrow$ \{Color $\}$
2. $\{$ Category $\} \rightarrow$ \{Department $\}$
3. \{Color, Category\} \rightarrow \{Price $\}$

Which / how many other FDs hold?

Finding Functional Dependencies

Example:

Provided FDs:

```
1. {Name} }->\mathrm{ {Color}
2. {Category} }->\mathrm{ {Dept.}
3. {Color, Category} }->\mathrm{ {Price}
```


Inferred FDs:

Inferred FD	Rule used
4. $\{$ Name, Category\} -> \{Name\}	$?$
5. $\{$ Name, Category\} -> \{Color\}	$?$
6. $\{$ Name, Category\} -> \{Category\}	$?$
7. $\{$ Name, Category\} -> \{Color, Category\}	$?$
8. $\{$ Name, Category\} -> \{Price\}	$?$

Which / how many other FDs hold?

Finding Functional Dependencies

Provided FDs:

Example:

Inferred FDs:

```
1. \(\{\) Name \(\} \rightarrow\) \{Color\}
2. \{Category\} \(\rightarrow\) \{Dept.\}
3. \{Color, Category\} \(\rightarrow\) \{Price \}
```

Inferred FD	Rule used
4. $\{$ Name, Category\} -> \{Name\}	Trivial
5. $\{$ Name, Category\} -> \{Color\}	Transitive (4 -> 1)
6. $\{$ Name, Category\} -> \{Category\}	Trivial
7. $\{$ Name, Category\} -> \{Color, Category\}	Split/combine (5+6)
8. $\{$ Name, Category\} -> \{Price\}	Transitive (7 -> 3)

Can we find an algorithmic way to do this?
Yes. But we need to learn about closures before that!

Closures

Closure of a set of Attributes

Given a set of attributes $\mathbf{A}_{1}, \ldots, \mathbf{A}_{\mathrm{n}}$ and a set of FDs \mathbf{F} : Then the closure, $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\}^{+}$is the set of attributes \mathbf{B} s.t. $\left\{\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}\right\} \rightarrow \mathbf{B}$

Example: $F=$| $\{$ name $\} \rightarrow$ \{color $\}$ |
| :--- |
| \{category\} \rightarrow \{department $\}$ |
| \{color, category \rightarrow \{price $\}$ |

Example
Closures:

```
{name}+ = {name, color}
{name, category}+ =
{name, category, color, dept, price}
{color}+ = {color}
```


Closure Algorithm

Start with $X=\left\{A_{1}, \ldots, A_{n}\right\}$ and set of FDs F.
Repeat until X doesn't change;
do:
if $\left\{B_{1}, \ldots, B_{n}\right\} \rightarrow C$ is in F and $\left\{B_{1}, \ldots, B_{n}\right\} \subseteq X$ then add C to X .

Return X as X^{+}

Closure Algorithm


```
{name, category}+ =
{name, category}
```


Closure Algorithm

Start with $X=\left\{A_{1}, \ldots, A_{n}\right\}$, FDs F. Repeat until X doesn't change; do:
if $\left\{B_{1}, \ldots, B_{n}\right\} \rightarrow C$ is in F and $\left\{B_{1}\right.$, ..., $\left.\mathrm{B}_{\mathrm{n}}\right\} \subseteq \mathrm{X}:$ then add C to X .
$\{$ name, category\}+ $=$ \{name, category\}
\{name, category\}+ = \{name, category, color\}

Closure Algorithm

Start with $X=\left\{A_{1}, \ldots, A_{n}\right\}$, FDs F. Repeat until X doesn't change; do:
if $\left\{B_{1}, \ldots, B_{n}\right\} \rightarrow C$ is in F and $\left\{B_{1}\right.$, ..., $\left.\mathrm{B}_{\mathrm{n}}\right\} \subseteq \mathrm{X}:$ then add C to X .
Return X as X $^{+}$
$F=\{$ name $\} \rightarrow\{$ color $\}$
\{category\} \rightarrow \{dept $\}$
\{color, category\} \rightarrow \{price\}

```
{name, category}+ =
{name, category}
```

$\{\text { name, category }\}^{+}=$
\{name, category, color\}

```
{name, category}+ =
{name, category, color, dept}
```


Closure Algorithm

Start with $X=\left\{A_{1}, \ldots, A_{n}\right\}$, FDs F. Repeat until X doesn't change; do:
if $\left\{B_{1}, \ldots, B_{n}\right\} \rightarrow C$ is in F and $\left\{B_{1}\right.$, ..., $\left.\mathrm{B}_{\mathrm{n}}\right\} \subseteq \mathrm{X}:$ then add C to X . Return X as X^{+} $F=\{$ name $\} \rightarrow$ \{color $\}$
\{category\} \rightarrow \{dept $\}$
\{color, category\} \rightarrow \{price\}

\{name, category\}+ = \{name, category\}

\{name, category\}+ = \{name, category, color\}

```
{name, category}+ =
{name, category, color, dept}
```

\{name, category\}+ = \{name, category, color, dept, price\}

EXAMPLE

Compute $\{\mathrm{A}, \mathrm{B}\}^{+}=\{\mathrm{A}, \mathrm{B}$,

$$
\}
$$

Compute $\{\mathrm{A}, \mathrm{F}\}^{+}=\{\mathrm{A}, \mathrm{F}$, \}

$$
\begin{aligned}
& R(A, B, C, D, E, F) \\
& \begin{array}{l}
\{A, B\} \rightarrow\{C\} \\
\{A, D\} \rightarrow\{E\} \\
\{B\} \rightarrow\{D\} \\
\{A, F\} \rightarrow\{B\}
\end{array}
\end{aligned}
$$

EXAMPLE

$$
\begin{aligned}
& R(A, B, C, D, E, F) \\
& \begin{array}{l}
\{A, B\} \rightarrow\{C\} \\
\{A, D\} \rightarrow\{E\} \\
\{B\} \rightarrow\{D\} \\
\{A, F\} \rightarrow\{B\}
\end{array}
\end{aligned}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$

$$
\}
$$

Compute $\{\mathrm{A}, \mathrm{F}\}^{+}=\{\mathrm{A}, \mathrm{F}, \mathrm{B}$

EXAMPLE

$$
\begin{aligned}
& R(A, B, C, D, E, F) \\
& \begin{array}{l}
\{A, B\} \rightarrow\{C\} \\
\{A, D\} \rightarrow\{E\} \\
\{B\} \rightarrow\{D\} \\
\{A, F\} \rightarrow\{B\}
\end{array}
\end{aligned}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\}$

Compute $\{\mathrm{A}, \mathrm{F}\}^{+}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$

3. CLOSURES, SUPERKEYS \& KEYS

What you will learn about in this section

1. Closures
2. Superkeys \& Keys

Why Do We Need the Closure?

- With closure we can find all FD's easily
- To check if $\mathrm{X} \rightarrow \mathrm{A}$

1. Compute X^{+}
2. Check if $\mathrm{A}(G) \mathrm{X}^{+}$

Note here that \mathbf{X} is a set of
attributes, but \mathbf{A} is a single
attribute. Why does considering
FDs of this form suffice?

Recall the Split/combine rule:
$X \rightarrow A_{1}, \ldots, X \rightarrow A_{n}$ implies
$X \rightarrow\left\{A_{1}, \ldots, A_{n}\right\}$

Using Closure to Infer ALLFDs

Step 1: Compute X^{+}, for every set of attributes X :
Example: Given F =

$$
\begin{aligned}
& \{A\}^{+}=\{A\} \\
& \{B\}^{+}=\{B, D\} \\
& \{C\}^{+}=\{C\} \\
& \{D\}^{+}=\{D\} \\
& \{A, B\}^{+}=\{A, B, C, D\} \\
& \{A, C\}^{+}=\{A, C\} \\
& \{A, D\}^{+}=\{A, B, C, D\} \\
& \{A, B, C\}^{+}=\{A, B, D\}^{+}=\{A, C, D\}^{+}=\{A, B, C, D\} \\
& \{B, C, D\}^{+}=\{B, C, D\} \\
& \{A, B, C, D\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

No need to compute these- why?

We did not include $\{B, C\}$, $\{B, D\},\{C, D\},\{B, C, D\}$ to save some space.

Using Closure to Infer ALLFDs

Step 1: Compute X^{+}, for every set of attributes X :
Example: Given $F=$

$$
\begin{aligned}
& \{A\}^{+}=\{A\}, \quad\{B\}^{+}=\{B, D\}, \quad\{C\}^{+}=\{C\},\{D\}^{+}= \\
& \{D\},\{A, B\}^{+}=\{A, B, C, D\},\{A, C\}^{+}=\{A, C\}, \\
& \{A, D\}^{+}=\{A, B, C, D\},\{A, B, C\}^{+}=\{A, B, D\}^{+}= \\
& \{A, C, D\}^{+}=\{A, B, C, D\},\{B, C, D\}^{+}=\{B, C, D\}, \\
& \{A, B, C, D\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $\mathrm{Y} \subseteq \mathrm{X}^{+}$and $\mathrm{X} \cap \mathrm{Y}=\varnothing$:

$$
\begin{aligned}
& \{A, B\} \rightarrow\{C, D\},\{A, D\} \rightarrow\{B, C\}, \\
& \{A, B, C\} \rightarrow\{D\},\{A, B, D\} \rightarrow\{C\}, \\
& \{A, C, D\} \rightarrow\{B\}
\end{aligned}
$$

Using Closure to Infer ALLFDs

Step 1: Compute X^{+}, for every set of attributes X :
Example: Given $F=$

$$
\begin{aligned}
& \{A\}^{+}=\{A\},\{B\}^{+}=\{B, D\}, \quad\{C\}^{+}=\{C\},\{D\}^{+}= \\
& \{D\},\{A, B\}^{+}=\{A, B, C, D\},\{A, C\}^{+}=\{A, C\}, \\
& \{A, D\}^{+}=\{A, B, C, D\},\{A, B, C\}^{+}=\{A, B, D\}^{+}= \\
& \{A, C, D\}^{+}=\{A, B, C, D\},\{B, C, D\}^{+}=\{B, C, D\}, \\
& \{A, B, C, D\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$:

$$
\begin{aligned}
& \{A, B\} \rightarrow\{C, D\},\{A, D\} \rightarrow\{B, C\} \\
& \{A, B, C\} \rightarrow\{D\},\{A, B, D\} \rightarrow\{C\}, \\
& \{A, C, D\} \rightarrow\{B\}
\end{aligned}
$$

" Y is in the closure of $X^{\prime \prime}$

Using Closure to Infer ALLFDs

Step 1: Compute X^{+}, for every set of attributes X :
Example: Given $F=$

$$
\begin{aligned}
& \{A\}^{+}=\{A\}, \quad\{B\}^{+}=\{B, D\}, \quad\{C\}^{+}=\{C\},\{D\}^{+}= \\
& \{D\},\{A, B\}^{+}=\{A, B, C, D\},\{A, C\}^{+}=\{A, C\}, \\
& \{A, D\}^{+}=\{A, B, C, D\},\{A, B, C\}^{+}=\{A, B, D\}^{+}= \\
& \{A, C, D\}^{+}=\{A, B, C, D\},\{B, C, D\}^{+}=\{B, C, D\}, \\
& \{A, B, C, D\}^{+}=\{A, B, C, D\}
\end{aligned}
$$

Step 2: Enumerate all FDs $X \rightarrow Y$, s.t. $Y \subseteq X^{+}$and $X \cap Y=\varnothing$:

$$
\begin{aligned}
& \{A, B\} \rightarrow\{C, D\},\{A, D\} \rightarrow\{B, C\}, \\
& \{A, B, C\} \rightarrow\{D\},\{A, B, D\} \rightarrow\{C\}, \\
& \{A, C, D\} \rightarrow\{B\}
\end{aligned}
$$

The FD $X \rightarrow Y$ is non-trivial

Superkeys and Keys

Keys and Superkeys

A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B in R, we have $\left\{A_{1}, \ldots, A_{n}\right\} \rightarrow B$
I.e. all attributes are functionally determined by a superkey

A key is a minimal superkey
Meaning that no subset of a key is also a superkey

Finding Keys and Superkeys

- For each set of attributes X

1. Compute X^{+}
2. If $X^{+}=$set of all attributes then X is a superkey
3. If X is minimal, then it is a key

Do we need to check all sets of attributes?

Example of Finding Keys

Product(name, price, category, color)
\{name, category\} \rightarrow price \{category\} \rightarrow color

What is a key?

Example of Keys

Product(name, price, category, color)
\{name, category\} \rightarrow price \{category\} \rightarrow color
\{name, category\}+ = \{name, price, category, color\} = the set of all attributes
\Rightarrow this is a superkey
\Rightarrow this is a key, since neither name nor category alone is a superkey

Acknowledgement

Some of these slides are taken from cs145 course offered by Stanford University.

[^0]: If t1, t2 agree here..

